Do you want to publish a course? Click here

Strongly Coupled Dark Energy with Warm dark matter vs. LCDM

140   0   0.0 ( 0 )
 Added by Roberto Mainini
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field $Phi$ and a DM component account for a stationary fraction, $sim 1, %$, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the inflation end, when $Phi$ (future DE) possibly plays a role in reheating, and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large $k$s, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high $k$. This motivates a second related paper, where such problems are treated in a quantitative way.



rate research

Read More

We present three distinct types of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. Our construction draws from the pull-back formalism for fluids and generalises the fluid action to involve couplings to the scalar field. We investigate the cosmology of each class of model both at the background and linearly perturbed level. We choose a potential for the scalar field and a specific coupling function for each class of models and we compute the Cosmic Microwave Background and matter power spectra.
In this first paper we discuss the linear theory and the background evolution of a new class of models we dub SCDEW: Strongly Coupled DE, plus WDM. In these models, WDM dominates todays matter density; like baryons, WDM is uncoupled. Dark Energy is a scalar field $Phi$; its coupling to ancillary CDM, whose todays density is $ll 1, %$, is an essential model feature. Such coupling, in fact, allows the formation of cosmic structures, in spite of very low WDM particle masses ($sim 100$ eV). SCDEW models yields Cosmic Microwave Background and linear Large Scale features substantially undistinguishable from $Lambda$CDM, but thanks to the very low WDM masses they strongly alleviate $Lambda$CDM issues on small scales, as confirmed via numerical simulations in the II associated paper. Moreover SCDEW cosmologies significantly ease the coincidence and fine tuning problems of $Lambda$CDM and, by using a field theory approach, we also outline possible links with inflationary models. We also discuss a possible fading of the coupling at low redshifts which prevents non linearities on the CDM component to cause computational problems. The (possible) low-$z$ coupling suppression, its mechanism, and its consequences are however still open questions -not necessarily problems- for SCDEW models. The coupling intensity and the WDM particle mass, although being extra parameters in respect to $Lambda$CDM, are found to be substantially constrained a priori so that, if SCDEW is the underlying cosmology, we expect most data to fit also $Lambda$CDM predictions.
We describe the methodology to include nonlinear evolution, including tidal effects, in the computation of subhalo distribution properties in both cold (CDM) and warm (WDM) dark matter universes. Using semi-analytic modeling, we include effects from dynamical friction, tidal stripping, and tidal heating, allowing us to dynamically evolve the subhalo distribution. We calibrate our nonlinear evolution scheme to the CDM subhalo mass function in the Aquarius N-body simulation, producing a subhalo mass function within the range of simulations. We find tidal effects to be the dominant mechanism of nonlinear evolution in the subhalo population. Finally, we compute the subhalo mass function for $m_chi=1.5$ keV WDM including the effects of nonlinear evolution, and compare radial number densities and mass density profiles of subhalos in CDM and WDM models. We show that all three signatures differ between the two dark matter models, suggesting that probes of substructure may be able to differentiate between them.
262 - Andrew J. Benson 2012
We describe a methodology to accurately compute halo mass functions, progenitor mass functions, merger rates and merger trees in non-cold dark matter universes using a self-consistent treatment of the generalized extended Press-Schechter formalism. Our approach permits rapid exploration of the subhalo population of galactic halos in dark matter models with a variety of different particle properties or universes with rolling, truncated, or more complicated power spectra. We make detailed comparisons of analytically derived mass functions and merger histories with recent warm dark matter cosmological N-body simulations, and find excellent agreement. We show that, once the accretion of smoothly distributed matter is accounted for, coarse-grained statistics such as the mass accretion history of halos can be almost indistinguishable between cold and warm dark matter cases. However, the halo mass function and progenitor mass functions differ significantly, with the warm dark matter cases being strongly suppressed below the free-streaming scale of the dark matter. We demonstrate the importance of using the correct solution for the excursion set barrier first-crossing distribution in warm dark matter - if the solution for a flat barrier is used instead the truncation of the halo mass function is much slower, leading to an overestimate of the number of low mass halos.
191 - Bo-Yu Pu , Xiao-Dong Xu , Bin Wang 2014
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the linear approximation. Furthermore we investigate the influence of the interaction between the early dark energy and the dark matter and its effect on the structure growth and CMB. We finally constrain the early dark energy model parameters and the coupling between dark sectors by confronting to different observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا