Do you want to publish a course? Click here

Online Learning with Abstention

136   0   0.0 ( 0 )
 Added by Giulia DeSalvo
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We present an extensive study of the key problem of online learning where algorithms are allowed to abstain from making predictions. In the adversarial setting, we show how existing online algorithms and guarantees can be adapted to this problem. In the stochastic setting, we first point out a bias problem that limits the straightforward extension of algorithms such as UCB-N to time-varying feedback graphs, as needed in this context. Next, we give a new algorithm, UCB-GT, that exploits historical data and is adapted to time-varying feedback graphs. We show that this algorithm benefits from more favorable regret guarantees than a possible, but limited, extension of UCB-N. We further report the results of a series of experiments demonstrating that UCB-GT largely outperforms that extension of UCB-N, as well as more standard baselines.



rate research

Read More

We show that in pool-based active classification without assumptions on the underlying distribution, if the learner is given the power to abstain from some predictions by paying the price marginally smaller than the average loss $1/2$ of a random guess, exponential savings in the number of label requests are possible whenever they are possible in the corresponding realizable problem. We extend this result to provide a necessary and sufficient condition for exponential savings in pool-based active classification under the model misspecification.
119 - Yuntao Du , Zhiwen Tan , Qian Chen 2019
Transfer learning has been demonstrated to be successful and essential in diverse applications, which transfers knowledge from related but different source domains to the target domain. Online transfer learning(OTL) is a more challenging problem where the target data arrive in an online manner. Most OTL methods combine source classifier and target classifier directly by assigning a weight to each classifier, and adjust the weights constantly. However, these methods pay little attention to reducing the distribution discrepancy between domains. In this paper, we propose a novel online transfer learning method which seeks to find a new feature representation, so that the marginal distribution and conditional distribution discrepancy can be online reduced simultaneously. We focus on online transfer learning with multiple source domains and use the Hedge strategy to leverage knowledge from source domains. We analyze the theoretical properties of the proposed algorithm and provide an upper mistake bound. Comprehensive experiments on two real-world datasets show that our method outperforms state-of-the-art methods by a large margin.
185 - Chao Gan , Jing Yang , Ruida Zhou 2019
In this paper, we investigate the impact of diverse user preference on learning under the stochastic multi-armed bandit (MAB) framework. We aim to show that when the user preferences are sufficiently diverse and each arm can be optimal for certain users, the O(log T) regret incurred by exploring the sub-optimal arms under the standard stochastic MAB setting can be reduced to a constant. Our intuition is that to achieve sub-linear regret, the number of times an optimal arm being pulled should scale linearly in time; when all arms are optimal for certain users and pulled frequently, the estimated arm statistics can quickly converge to their true values, thus reducing the need of exploration dramatically. We cast the problem into a stochastic linear bandits model, where both the users preferences and the state of arms are modeled as {independent and identical distributed (i.i.d)} d-dimensional random vectors. After receiving the user preference vector at the beginning of each time slot, the learner pulls an arm and receives a reward as the linear product of the preference vector and the arm state vector. We also assume that the state of the pulled arm is revealed to the learner once its pulled. We propose a Weighted Upper Confidence Bound (W-UCB) algorithm and show that it can achieve a constant regret when the user preferences are sufficiently diverse. The performance of W-UCB under general setups is also completely characterized and validated with synthetic data.
107 - Guy Uziel 2019
Deep learning models are considered to be state-of-the-art in many offline machine learning tasks. However, many of the techniques developed are not suitable for online learning tasks. The problem of using deep learning models with sequential data becomes even harder when several loss functions need to be considered simultaneously, as in many real-world applications. In this paper, we, therefore, propose a novel online deep learning training procedure which can be used regardless of the neural networks architecture, aiming to deal with the multiple objectives case. We demonstrate and show the effectiveness of our algorithm on the Neyman-Pearson classification problem on several benchmark datasets.
210 - Bingcong Li , Tianyi Chen , 2018
This paper deals with bandit online learning problems involving feedback of unknown delay that can emerge in multi-armed bandit (MAB) and bandit convex optimization (BCO) settings. MAB and BCO require only values of the objective function involved that become available through feedback, and are used to estimate the gradient appearing in the corresponding iterative algorithms. Since the challenging case of feedback with emph{unknown} delays prevents one from constructing the sought gradient estimates, existing MAB and BCO algorithms become intractable. For such challenging setups, delayed exploration, exploitation, and exponential (DEXP3) iterations, along with delayed bandit gradient descent (DBGD) iterations are developed for MAB and BCO, respectively. Leveraging a unified analysis framework, it is established that the regret of DEXP3 and DBGD are ${cal O}big( sqrt{Kbar{d}(T+D)} big)$ and ${cal O}big( sqrt{K(T+D)} big)$, respectively, where $bar{d}$ is the maximum delay and $D$ denotes the delay accumulated over $T$ slots. Numerical tests using both synthetic and real data validate the performance of DEXP3 and DBGD.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا