Do you want to publish a course? Click here

FRII{sl{CAT}}: A FIRST catalog of FR~II radio galaxies

126   0   0.0 ( 0 )
 Added by Francesco Massaro
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We built a catalog of 122 FR~II radio galaxies, called FRII{sl{CAT}}, selected from a published sample obtained by combining observations from the NVSS, FIRST, and SDSS surveys. The catalog includes sources with redshift $leq 0.15$, an edge-brightened radio morphology, and those with at least one of the emission peaks located at radius $r$ larger than 30 kpc from the center of the host. The radio luminosity at 1.4 GHz of the FRII sources covers the range $L_{1.4} sim 10^{39.5} - 10^{42.5}$ $ergs$. The FRII catalog has 90% of low and 10% of high excitation galaxies (LEGs and HEGs), respectively. The properties of these two classes are significantly different. The FRII{sl{CAT}} LEGs are mostly luminous ($-20 gtrsim M_r gtrsim -24$), red early-type galaxies with black hole masses in the range $10^8 lesssim M_{rm BH} lesssim 10^9 M_odot$; they are essentially indistinguishable from the FR~Is belonging to the FRI{sl{CAT}}. The HEG FR~IIs are associated with optically bluer and mid-IR redder hosts than the LEG FR~IIs and to galaxies and black holes that are smaller, on average, by a factor $sim$2. FR~IIs have a factor $sim$ 3 higher average radio luminosity than FR~Is. Nonetheless, most ($sim 90$ %) of the selected FR~IIs have a radio power that is lower, by as much as a factor of $sim$100, than the transition value between FR~Is and FR~IIs found in the 3C sample. The correspondence between the morphological classification of FR~I and FR~II and the separation in radio power disappears when including sources selected at low radio flux thresholds, which is in line with previous results. In conclusion, a radio source produced by a low power jet can be edge brightened or edge darkened, and the outcome is not related to differences in the optical properties of the host galaxy.



rate research

Read More

203 - A. Capetti 2016
We built a catalog of 219 FRI radio galaxies (FRIs), called FRICAT, selected from a published sample and obtained by combining observations from the NVSS, FIRST, and SDSS surveys. We included in the catalog the sources with an edge-darkened radio morphology, redshift $leq 0.15$, and extending (at the sensitivity of the FIRST images) to a radius $r$ larger than 30 kpc from the center of the host. We also selected an additional sample (sFRICAT) of 14 smaller (10 $<r<$ 30 kpc) FRIs, limiting to $z<0.05$. The hosts of the FRICAT sources are all luminous ($-21 gtrsim M_r gtrsim -24$), red early-type galaxies with black hole masses in the range $10^8 lesssim M_{rm BH} lesssim 3times10^9 M_odot$; the spectroscopic classification based on the optical emission line ratios indicates that they are all low excitation galaxies. Sources in the FRICAT are then indistinguishable from the FRIs belonging to the Third Cambridge Catalogue of Radio Sources (3C) on the basis of their optical properties. Conversely, while the 3C-FRIs show a strong positive trend between radio and [OIII] emission line luminosity, these two quantities are unrelated in the FRICAT sources; at a given line luminosity, they show radio luminosities spanning about two orders of magnitude and extending to much lower ratios between radio and line power than 3C-FRIs. Our main conclusion is that the 3C-FRIs just represent the tip of the iceberg of a much larger and diverse population of FRIs.
78 - D. Macconi , E. Torresi 2020
Fanaroff-Riley II low-excitation radio galaxies (FRII-LERGs) are characterized by weak nuclear excitation on pc-scales and by properties typical of powerful FRIIs (defined as high-excitation, hereafter HERGs/BLRGs) on kp-scales. Since a link between the accretion properties and the power of the produced jets is expected both from theory and observations, their nature is still debated. In this work we investigate the X-ray properties of a complete sample of 19 FRII-LERGs belonging to the 3CR catalog, exploiting Chandra and XMM-Newton archival data. We also analyze 32 FRII-HERGs/BLRGs with Chandra data as a control sample. We compared FRII-LERG and FRII-HERG/BLRG X-ray properties and optical data available in literature to obtain a wide outlook of their behavior. The low accretion rate estimates for FRII-LERGs, from both X-ray and optical bands, allow us to firmly reject the hypothesis for that they are the highly obscured counterpart of powerful FRII-HERGs/BLRGs. Therefore, at least two hypothesis can be invoked to explain the FRII-LERGs nature: (i) they are evolving from classical FRIIs because of the depletion of accreting cold gas in the nuclear region, while the extended radio emission is the heritage of a past efficiently accreting activity; (ii) they are an intrinsically distinct class of objects with respect to classical FRIs/FRIIs. Surprisingly, in this direction a correlation between accretion rates and environmental richness is found in our sample. The richer the environment, the more inefficient is the accretion. In this framework, the FRII-LERGs are intermediate between FRIs and FRII-HERGs/BLRGs both in terms of accretion rate and environment.
With the aim of exploring the properties of the class of FR0 radio galaxies, we selected a sample of 108 compact radio sources, called FR0CAT, by combining observations from the NVSS, FIRST, and SDSS surveys. The catalog includes sources with z$leq 0.05$, with a radio size $lesssim$ 5 kpc, and with an optical spectrum characteristic of low-excitation galaxies. Their 1.4-GHz radio luminosities range $10^{38} lesssim u L_{1.4} lesssim 10^{40}$ erg/s. The FR0CAT hosts are mostly (86%) luminous ($-21 gtrsim M_r gtrsim -23$) red early-type galaxies with black hole masses $10^8 lesssim M_{rm BH} lesssim 10^9 M_odot$: similar to the hosts of FRI radio galaxies, but they are on average a factor $sim$1.6 less massive. The number density of FR0CAT sources is $sim$5 times higher than that of FRIs, and thus they represent the dominant population of radio sources in the local Universe. Different scenarios are considered to account for the smaller sizes and larger abundance of FR0s with respect to FRIs. An age-size scenario that considers FR0s as young radio galaxies that will all eventually evolve into extended radio sources cannot be reconciled with the large space density of FR0s. However, the radio activity recurrence, with the duration of the active phase covering a wide range of values and with short active periods strongly favored with respect to longer ones, might account for their large density number. Alternatively, the jet properties of FR0s might be intrinsically different from those of the FRIs, the former class having lower bulk Lorentz factors, possibly due to lower black hole spins. Our study indicates that FR0s and FRI/IIs can be interpreted as two extremes of a continuous population of radio sources that is characterized by a broad distribution of sizes and luminosities of their extended radio emission, but shares a single class of host galaxies.
The energetic composition of radio lobes in the FR II galaxies $-$ estimated by comparing their radio luminosities with the powers required to inflate cavities in the external medium $-$ seems to exclude the possibility of their energetic domination by protons. Furthermore, if the jets were dominated by the kinetic energy of cold protons, it would be difficult to efficiently accelerate leptons in the jets terminal shocks. Assuming that the relative energy contents of leptons, protons and magnetic fields are preserved across the shocks, the above implies that the large-scale jets should also be energetically dominated by leptons: $P_{rm e,j} gtrsim P_{rm p,j}$. On the other hand, previous studies of small-scale jets in blazars and radio cores suggest a pair content (number of electrons and positrons per proton) of the order of $n_{rm e}/n_{rm p} sim 20$. Assuming further that the particle composition of jets does not evolve beyond the blazar scales, we show that this implies an average random Lorentz factor of leptons in large-scale jets of $bargamma_{rm e,j} gtrsim 70(1+chi_{rm p})(20n_{rm p}/n_{rm e})$, and that the protons should be mildly relativistic with $chi_{rm p} equiv (epsilon_{rm p} + p_{rm p})/rho_{rm p} c^2 lesssim 2$, $p_{rm p}$ the pressure of protons, $epsilon_{rm p}$ the internal energy density of protons, and $rho_{rm p} c^2$ the rest-mass energy density of protons. We derive the necessary conditions for loading the inner jets by electron-positron pairs and proton-electron plasma, and provide arguments that heating of leptons in jets is dominated by magnetic reconnection.
We present a systematic analysis of the extended X-ray emission discovered around 35 FR II radio galaxies from the revised Third Cambridge catalog (3CR) Chandra Snapshot Survey with redshifts between 0.05 to 0.9. We aimed to (i) test for the presence of extended X-ray emission around FR II radio galaxies, (ii) investigate if the extended emission origin is due to Inverse Compton scattering of seed photons arising from the Cosmic Microwave Background (IC/CMB) or to thermal emission from an intracluster medium (ICM) and (iii) test the impact of this extended emission on hotspot detection. We investigated the nature of the extended X-ray emission by studying its morphology and compared our results with low-frequency radio observations (i.e., $sim$150 MHz), in the TGSS and LOFAR archives, as well as with optical images from Pan-STARRS. In addition, we optimized a search for X-ray counterparts of hotspots in 3CR FR II radio galaxies. We found statistically significant extended emission ($>$3$sigma$ confidence level) along the radio axis for $sim$90%, and in the perpendicular direction for $sim$60% of our sample. We confirmed the detection of 7 hotspots in the 0.5 - 3 keV. In the cases where the emission in the direction perpendicular to the radio axis is comparable to that along the radio axis, we suggest that the underlying radiative process is thermal emission from ICM. Otherwise, the dominant radiative process is likely non-thermal IC/CMB emission from lobes. We found that non-thermal IC/CMB is the dominant process in $sim$70% of the sources in our sample, while thermal emission from the ICM dominates in $sim$15% of them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا