No Arabic abstract
Advances in neural network based classifiers have transformed automatic feature learning from a pipe dream of stronger AI to a routine and expected property of practical systems. Since the emergence of AlexNet every winning submission of the ImageNet challenge has employed end-to-end representation learning, and due to the utility of good representations for transfer learning, representation learning has become as an important and distinct task from supervised learning. At present, this distinction is inconsequential, as supervised methods are state-of-the-art in learning transferable representations. But recent work has shown that generative models can also be powerful agents of representation learning. Will the representations learned from these generative methods ever rival the quality of those from their supervised competitors? In this work, we argue in the affirmative, that from an information theoretic perspective, generative models have greater potential for representation learning. Based on several experimentally validated assumptions, we show that supervised learning is upper bounded in its capacity for representation learning in ways that certain generative models, such as Generative Adversarial Networks (GANs) are not. We hope that our analysis will provide a rigorous motivation for further exploration of generative representation learning.
The goal of the unsupervised learning of disentangled representations is to separate the independent explanatory factors of variation in the data without access to supervision. In this paper, we summarize the results of Locatello et al., 2019, and focus on their implications for practitioners. We discuss the theoretical result showing that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases and the practical challenges it entails. Finally, we comment on our experimental findings, highlighting the limitations of state-of-the-art approaches and directions for future research.
A major challenge in modern reinforcement learning (RL) is efficient control of dynamical systems from high-dimensional sensory observations. Learning controllable embedding (LCE) is a promising approach that addresses this challenge by embedding the observations into a lower-dimensional latent space, estimating the latent dynamics, and utilizing it to perform control in the latent space. Two important questions in this area are how to learn a representation that is amenable to the control problem at hand, and how to achieve an end-to-end framework for representation learning and control. In this paper, we take a few steps towards addressing these questions. We first formulate a LCE model to learn representations that are suitable to be used by a policy iteration style algorithm in the latent space. We call this model control-aware representation learning (CARL). We derive a loss function for CARL that has close connection to the prediction, consistency, and curvature (PCC) principle for representation learning. We derive three implementations of CARL. In the offline implementation, we replace the locally-linear control algorithm (e.g.,~iLQR) used by the existing LCE methods with a RL algorithm, namely model-based soft actor-critic, and show that it results in significant improvement. In online CARL, we interleave representation learning and control, and demonstrate further gain in performance. Finally, we propose value-guided CARL, a variation in which we optimize a weighted version of the CARL loss function, where the weights depend on the TD-error of the current policy. We evaluate the proposed algorithms by extensive experiments on benchmark tasks and compare them with several LCE baselines.
Learning low-dimensional representations that disentangle the underlying factors of variation in data has been posited as an important step towards interpretable machine learning with good generalization. To address the fact that there is no consensus on what disentanglement entails, Higgins et al. (2018) propose a formal definition for Linear Symmetry-Based Disentanglement, or LSBD, arguing that underlying real-world transformations give exploitable structure to data. Although several works focus on learning LSBD representations, such methods require supervision on the underlying transformations for the entire dataset, and cannot deal with unlabeled data. Moreover, none of these works provide a metric to quantify LSBD. We propose a metric to quantify LSBD representations that is easy to compute under certain well-defined assumptions. Furthermore, we present a method that can leverage unlabeled data, such that LSBD representations can be learned with limited supervision on transformations. Using our LSBD metric, our results show that limited supervision is indeed sufficient to learn LSBD representations.
The benefit of multi-task learning over single-task learning relies on the ability to use relations across tasks to improve performance on any single task. While sharing representations is an important mechanism to share information across tasks, its success depends on how well the structure underlying the tasks is captured. In some real-world situations, we have access to metadata, or additional information about a task, that may not provide any new insight in the context of a single task setup alone but inform relations across multiple tasks. While this metadata can be useful for improving multi-task learning performance, effectively incorporating it can be an additional challenge. We posit that an efficient approach to knowledge transfer is through the use of multiple context-dependent, composable representations shared across a family of tasks. In this framework, metadata can help to learn interpretable representations and provide the context to inform which representations to compose and how to compose them. We use the proposed approach to obtain state-of-the-art results in Meta-World, a challenging multi-task benchmark consisting of 50 distinct robotic manipulation tasks.
Collecting large-scale data with clean labels for supervised training of neural networks is practically challenging. Although noisy labels are usually cheap to acquire, existing methods suffer a lot from label noise. This paper targets at the challenge of robust training at high label noise regimes. The key insight to achieve this goal is to wisely leverage a small trusted set to estimate exemplar weights and pseudo labels for noisy data in order to reuse them for supervised training. We present a holistic framework to train deep neural networks in a way that is highly invulnerable to label noise. Our method sets the new state of the art on various types of label noise and achieves excellent performance on large-scale datasets with real-world label noise. For instance, on CIFAR100 with a $40%$ uniform noise ratio and only 10 trusted labeled data per class, our method achieves $80.2{pm}0.3%$ classification accuracy, where the error rate is only $1.4%$ higher than a neural network trained without label noise. Moreover, increasing the noise ratio to $80%$, our method still maintains a high accuracy of $75.5{pm}0.2%$, compared to the previous best accuracy $48.2%$. Source code available: https://github.com/google-research/google-research/tree/master/ieg