Do you want to publish a course? Click here

Orthogonalized ALS: A Theoretically Principled Tensor Decomposition Algorithm for Practical Use

104   0   0.0 ( 0 )
 Added by Vatsal Sharan
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The popular Alternating Least Squares (ALS) algorithm for tensor decomposition is efficient and easy to implement, but often converges to poor local optima---particularly when the weights of the factors are non-uniform. We propose a modification of the ALS approach that is as efficient as standard ALS, but provably recovers the true factors with random initialization under standard incoherence assumptions on the factors of the tensor. We demonstrate the significant practical superiority of our approach over traditional ALS for a variety of tasks on synthetic data---including tensor factorization on exact, noisy and over-complete tensors, as well as tensor completion---and for computing word embeddings from a third-order word tri-occurrence tensor.



rate research

Read More

We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by $11.41%$ in terms of mean $ell_2$ perturbation distance.
The CANDECOMP/PARAFAC (CP) decomposition is a leading method for the analysis of multiway data. The standard alternating least squares algorithm for the CP decomposition (CP-ALS) involves a series of highly overdetermined linear least squares problems. We extend randomized least squares methods to tensors and show the workload of CP-ALS can be drastically reduced without a sacrifice in quality. We introduce techniques for efficiently preprocessing, sampling, and computing randomized least squares on a dense tensor of arbitrary order, as well as an efficient sampling-based technique for checking the stopping condition. We also show more generally that the Khatri-Rao product (used within the CP-ALS iteration) produces conditions favorable for direct sampling. In numerical results, we see improvements in speed, reductions in memory requirements, and robustness with respect to initialization.
Hypergraphs have gained increasing attention in the machine learning community lately due to their superiority over graphs in capturing super-dyadic interactions among entities. In this work, we propose a novel approach for the partitioning of k-uniform hypergraphs. Most of the existing methods work by reducing the hypergraph to a graph followed by applying standard graph partitioning algorithms. The reduction step restricts the algorithms to capturing only some weighted pairwise interactions and hence loses essential information about the original hypergraph. We overcome this issue by utilizing the tensor-based representation of hypergraphs, which enables us to capture actual super-dyadic interactions. We prove that the hypergraph to graph reduction is a special case of tensor contraction. We extend the notion of minimum ratio-cut and normalized-cut from graphs to hypergraphs and show the relaxed optimization problem is equivalent to tensor eigenvalue decomposition. This novel formulation also enables us to capture different ways of cutting a hyperedge, unlike the existing reduction approaches. We propose a hypergraph partitioning algorithm inspired from spectral graph theory that can accommodate this notion of hyperedge cuts. We also derive a tighter upper bound on the minimum positive eigenvalue of even-order hypergraph Laplacian tensor in terms of its conductance, which is utilized in the partitioning algorithm to approximate the normalized cut. The efficacy of the proposed method is demonstrated numerically on simple hypergraphs. We also show improvement for the min-cut solution on 2-uniform hypergraphs (graphs) over the standard spectral partitioning algorithm.
How might one test the hypothesis that graphs were sampled from the same distribution? Here, we compare two statistical tests that address this question. The first uses the observed subgraph densities themselves as estimates of those of the underlying distribution. The second test uses a new approach that converts these subgraph densities into estimates of the graph cumulants of the distribution. We demonstrate -- via theory, simulation, and application to real data -- the superior statistical power of using graph cumulants.
We consider the problem of factorizing a structured 3-way tensor into its constituent Canonical Polyadic (CP) factors. This decomposition, which can be viewed as a generalization of singular value decomposition (SVD) for tensors, reveals how the tensor dimensions (features) interact with each other. However, since the factors are a priori unknown, the corresponding optimization problems are inherently non-convex. The existing guaranteed algorithms which handle this non-convexity incur an irreducible error (bias), and only apply to cases where all factors have the same structure. To this end, we develop a provable algorithm for online structured tensor factorization, wherein one of the factors obeys some incoherence conditions, and the others are sparse. Specifically we show that, under some relatively mild conditions on initialization, rank, and sparsity, our algorithm recovers the factors exactly (up to scaling and permutation) at a linear rate. Complementary to our theoretical results, our synthetic and real-world data evaluations showcase superior performance compared to related techniques. Moreover, its scalability and ability to learn on-the-fly makes it suitable for real-world tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا