Combining electronic Raman scattering experiments with cellular dynamical mean field theory, we present evidence of the pseudogap in the superconducting state of various hole-doped cuprates. In Bi2Sr2CaCu2O8+d we track the superconducting pseudogap hallmark, a peak-dip feature, as a function of temperature T and doping p, well beyond the optimal one. We show that, at all temperatures under the superconducting dome, the pseudogap disappears at the doping pc, between 0.222 and 0.226, where also the normal-state pseudogap collapses at a Lifshitz transition. This demonstrates that the superconducting pseudogap boundary forms a vertical line in the T-p phase diagram.