Transport of platelets induced by red blood cells based on mixture theory


Abstract in English

Thrombosis is a common complication following the surgical implantation of blood contacting devices, and is strongly influenced by the phenomenon of near-wall enrichment of platelets. This paper describes a multi-constituent continuum approach to study this phenomenon. A mixture-theory model is used to describe the motion of the plasma and the red blood cells (RBCs) and the interactions between the two components. A transport model is developed to study the influence of the RBC field on the platelets. The model is used to study blood flow in a rectangular micro-channel, a sudden expansion micro-channel, and a channel containing micro crevices (representing a practical problem encountered in most blood-wetted devices). The simulations show that in the rectangular channel the concentration of platelets near the walls is about five times higher than the concentration near the centerline of the channel. It is also noticed that in the channel with crevices, extremely a large number of platelets accumulate in the deep part of the crevices and this may serve as the nidus for thrombosis occurring in medical devices. Keywords: Platelets; Blood flow; RBCs; Micro-channel; Mixture theory; Two-fluids; Thrombosis

Download