No Arabic abstract
Measurements of the linearly-polarized photon beam asymmetry $Sigma$ for photoproduction from the proton of $eta$ and $eta^prime$ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the $gamma p to eta p$ reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the $gamma p to eta^prime p$ reaction. For $gamma p to eta p$, the data reported here considerably extend the range of measurements to higher energies, and are consistent with the few previously published measurements for this observable near threshold. For $gamma p to eta^prime p$, the results obtained are consistent with the few previously published measurements for this observable near threshold, but also greatly expand the incident photon energy coverage for that reaction. Initial analysis of the data reported here with the Bonn-Gatchina model strengthens the evidence for four nucleon resonances -- the $N(1895)1/2^-$, $N(1900)3/2^+$, $N(2100)1/2^+$ and $N(2120)3/2^-$ resonances -- which presently lack the four-star status in the current Particle Data Group compilation, providing examples of how these new measurements help refine models of the photoproduction process.
The $Sigma$ beam asymmetry in $eta^{prime}$ photoproduction off the proton was measured at the GrAAL polarised photon beam with incoming photon energies of 1.461 and 1.480 GeV. For both energies the asymmetry as a function of the meson production angle shows a clear structure, more pronounced at the lowest one, with a change of sign around 90$^o$. The observed behaviour is compatible with P-wave D-wave (or S-wave F-wave) interference, the closer to threshold the stronger. The results are compared to the existing state-of-the-art calculations that fail to account for the data.
We report on the measurement of the beam asymmetry $Sigma$ for the reactions $vec{gamma}prightarrow peta$ and $vec{gamma}p rightarrow peta^{prime}$ from the GlueX experiment, using an 8.2--8.8 GeV linearly polarized tagged photon beam incident on a liquid hydrogen target in Hall D at Jefferson Lab. These measurements are made as a function of momentum transfer $-t$, with significantly higher statistical precision than our earlier $eta$ measurements, and are the first measurements of $eta^{prime}$ in this energy range. We compare the results to theoretical predictions based on $t$--channel quasi-particle exchange. We also compare the ratio of $Sigma_{eta}$ to $Sigma_{eta^{prime}}$ to these models, as this ratio is predicted to be sensitive to the amount of $sbar{s}$ exchange in the production. We find that photoproduction of both $eta$ and $eta^{prime}$ is dominated by natural parity exchange with little dependence on $-t$.
We report measurements of the photon beam asymmetry $Sigma$ for the reactions $vec{gamma}pto ppi^0$ and $vec{gamma}pto peta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Labs Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $pi^0$ measurements and are the first $eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.
A study of the partial-wave content of the $gamma pto eta^prime p$ reaction in the fourth resonance region is presented, which has been prompted by new measurements of polarization observables for that process. Using the Bonn-Gatchina partial-wave formalism, the incorporation of new data indicates that the $N(1895)1/2^-$, $N(1900)3/2^+$, $N(2100)1/2^+$, and $N(2120)3/2^-$ are the most significant contributors to the photoproduction process. New results for the branching ratios of the decays of these more prominent resonances to $Neta^prime$ final states are provided; such branches have not been indicated in the most recent edition of the Review of Particle Properties. Based on the analysis performed here, predictions for the helicity asymmetry $E$ for the $gamma pto eta^prime p$ reaction are presented.
Results are presented for the first measurement of the double-polarization helicity asymmetry E for the $eta$ photoproduction reaction $gamma p rightarrow eta p$. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. As an initial application of these data, the results have been incorporated into the Julich model to examine the case for the existence of a narrow $N^*$ resonance between 1.66 and 1.70 GeV. The addition of these data to the world database results in marked changes in the predictions for the E observable using that model. Further comparison with several theoretical approaches indicates these data will significantly enhance our understanding of nucleon resonances.