Do you want to publish a course? Click here

Rotting Bandits

88   0   0.0 ( 0 )
 Added by Nir Levine
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The Multi-Armed Bandits (MAB) framework highlights the tension between acquiring new knowledge (Exploration) and leveraging available knowledge (Exploitation). In the classical MAB problem, a decision maker must choose an arm at each time step, upon which she receives a reward. The decision makers objective is to maximize her cumulative expected reward over the time horizon. The MAB problem has been studied extensively, specifically under the assumption of the arms rewards distributions being stationary, or quasi-stationary, over time. We consider a variant of the MAB framework, which we termed Rotting Bandits, where each arms expected reward decays as a function of the number of times it has been pulled. We are motivated by many real-world scenarios such as online advertising, content recommendation, crowdsourcing, and more. We present algorithms, accompanied by simulations, and derive theoretical guarantees.



rate research

Read More

Stochastic Lipschitz bandit algorithms balance exploration and exploitation, and have been used for a variety of important task domains. In this paper, we present a framework for Lipschitz bandit methods that adaptively learns partitions of context- and arm-space. Due to this flexibility, the algorithm is able to efficiently optimize rewards and minimize regret, by focusing on the portions of the space that are most relevant. In our analysis, we link tree-based methods to Gaussian processes. In light of our analysis, we design a novel hierarchical Bayesian model for Lipschitz bandit problems. Our experiments show that our algorithms can achieve state-of-the-art performance in challenging real-world tasks such as neural network hyperparameter tuning.
Multi-player Multi-Armed Bandits (MAB) have been extensively studied in the literature, motivated by applications to Cognitive Radio systems. Driven by such applications as well, we motivate the introduction of several levels of feedback for multi-player MAB algorithms. Most existing work assume that sensing information is available to the algorithm. Under this assumption, we improve the state-of-the-art lower bound for the regret of any decentralized algorithms and introduce two algorithms, RandTopM and MCTopM, that are shown to empirically outperform existing algorithms. Moreover, we provide strong theoretical guarantees for these algorithms, including a notion of asymptotic optimality in terms of the number of selections of bad arms. We then introduce a promising heuristic, called Selfish, that can operate without sensing information, which is crucial for emerging applications to Internet of Things networks. We investigate the empirical performance of this algorithm and provide some first theoretical elements for the understanding of its behavior.
Standard approaches to decision-making under uncertainty focus on sequential exploration of the space of decisions. However, textit{simultaneously} proposing a batch of decisions, which leverages available resources for parallel experimentation, has the potential to rapidly accelerate exploration. We present a family of (parallel) contextual linear bandit algorithms, whose regret is nearly identical to their perfectly sequential counterparts -- given access to the same total number of oracle queries -- up to a lower-order burn-in term that is dependent on the context-set geometry. We provide matching information-theoretic lower bounds on parallel regret performance to establish our algorithms are asymptotically optimal in the time horizon. Finally, we also present an empirical evaluation of these parallel algorithms in several domains, including materials discovery and biological sequence design problems, to demonstrate the utility of parallelized bandits in practical settings.
Classic contextual bandit algorithms for linear models, such as LinUCB, assume that the reward distribution for an arm is modeled by a stationary linear regression. When the linear regression model is non-stationary over time, the regret of LinUCB can scale linearly with time. In this paper, we propose a novel multiscale changepoint detection method for the non-stationary linear bandit problems, called Multiscale-LinUCB, which actively adapts to the changing environment. We also provide theoretical analysis of regret bound for Multiscale-LinUCB algorithm. Experimental results show that our proposed Multiscale-LinUCB algorithm outperforms other state-of-the-art algorithms in non-stationary contextual environments.
We formulate and study a novel multi-armed bandit problem called the qualitative dueling bandit (QDB) problem, where an agent observes not numeric but qualitative feedback by pulling each arm. We employ the same regret as the dueling bandit (DB) problem where the duel is carried out by comparing the qualitative feedback. Although we can naively use classic DB algorithms for solving the QDB problem, this reduction significantly worsens the performance---actually, in the QDB problem, the probability that one arm wins the duel over another arm can be directly estimated without carrying out actual duels. In this paper, we propose such direct algorithms for the QDB problem. Our theoretical analysis shows that the proposed algorithms significantly outperform DB algorithms by incorporating the qualitative feedback, and experimental results also demonstrate vast improvement over the existing DB algorithms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا