Do you want to publish a course? Click here

Evolution of the Ubiquitin-Activating Enzyme Uba1 (E1)

68   0   0.0 ( 0 )
 Added by J. C. Phillips
 Publication date 2017
  fields Biology
and research's language is English




Ask ChatGPT about the research

Ubiquitin tags diseased proteins and initiates an enzyme conjugation cascade, which has three stages. The first-stage enzyme Uba1 (E1) has evolved only modestly from slime mold to humans, and is > 14 times larger than Ub. Here we use critical point thermodynamic scaling theory to connect Uba1 (E1) evolution from yeast and slime mold to fruit flies and humans to subtle changes in its amino acid sequences.



rate research

Read More

210 - J. C. Phillips 2020
What is life. Schrodingers question is discussed here for a specific protein, villin, which builds cells in tissues that detect taste and sound. Villin is represented by a sequence of 827 amino acids bound to a peptide backbone chain. We focus attention on a limited problem, the Darwinian evolution of villin sequences from chickens to humans. This biophysical problem is analyzed using a new physicical method based on thermodynamic domain scaling, a technique that bridges the gap between physical concepts, self-organized criticality, and conventional biostructural practice. It turns out that the evolutionary changes can be explained by Darwinian selection, which is not generally accepted by biologists at the protein level. The presentation is self-contained, and requires no prior experience with proteins at the molecular level.
72 - Dirson Jian Li 2018
The post-genomic era has brought opportunities to bridge traditionally separate fields of early history of life and brought new insight into origin and evolution of biodiversity. According to distributions of codons in genome sequences, I found a relationship between the genetic code and the tree of life. This remote and profound relationship involves the origin and evolution of the genetic code and the diversification and expansion of genomes. Here, a prebiotic picture of the triplex nucleic acid evolution is proposed to explain the origin of the genetic code, where the transition from disorder to order in the origin of life might be due to the increasing stabilities of triplex base pairs. The codon degeneracy can be obtained in detail based on the coevolution of the genetic code with amino acids, or equivalently, the coevolution of tRNAs with aaRSs. This theory is based on experimental data such as the stability of triplex base pairs and the statistical features of genomic codon distributions. Several experimentally testable proposals have been developed. This study should be regarded as an exploratory attempt to reveal the early evolution of life based on sequence information in a statistical manner.
209 - J. C. Phillips 2020
CoV2019 has evolved to be much more dangerous than CoV2003. Experiments suggest that structural rearrangements dramatically enhance CoV2019 activity. We identify a new first stage of infection which precedes structural rearrangements by using biomolecular evolutionary theory to identify sequence differences enhancing viral attachment rates. We find a small cluster of mutations which show that CoV-2 has a new feature that promotes much stronger viral attachment and enhances contagiousness. The extremely dangerous dynamics of human coronavirus infection is a dramatic example of evolutionary approach of self-organized networks to criticality. It may favor a very successful vaccine. The identified mutations can be used to test the present theory experimentally.
104 - J. C. Phillips 2020
Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). The principal features of the eukaryotic evolution of the cytoskeleton motor protein myosin-1 parallel those of actin and tubulin, but also show striking differences connected to its dynamical function. Optimized (long) hydropathic waves characterize the molecular level Darwinian evolution towards optimized functionality (self-organized criticality). The N-terminal and central domains of myosin-1 have evolved in eukaryotes at different rates, with the central domain hydropathic extrema being optimally active in humans. A test shows that hydropathic scaling can yield accuracies of better than 1% near optimized functionality. Evolution towards synchronized level extrema is connected to a special function of Mys-1 in humans involving Golgi complexes.
The evolution of terrestrial and aquatic wild type (WT) globins is dominated by changes in two proximate - distal Histidine ligand exit channels, here monitored quantitatively by hydropathic waves. These waves reveal allometric functional features inaccessible to single amino acid stereochemical contact models, and even very large all-atom Newtonian simulations. The evolutionary differences between these features between myoglobin and neuroglobin are related to the two oxidation channels through hydropathic wave analysis, which identifies subtle interspecies functional differences inaccessible to traditional size and metabolic scaling studies. Our analysis involves dynamic synchronization of allometric interactions across entire globins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا