No Arabic abstract
Quantum coherence, which quantifies the superposition properties of a quantum state, plays an indispensable role in quantum resource theory. A recent theoretical work [Phys. Rev. Lett. textbf{116}, 070402 (2016)] studied the manipulation of quantum coherence in bipartite or multipartite systems under the protocol Local Incoherent Operation and Classical Communication (LQICC). Here we present the first experimental realization of obtaining maximal coherence in assisted distillation protocol based on linear optical system. The results of our work show that the optimal distillable coherence rate can be reached even in one-copy scenario when the overall bipartite qubit state is pure. Moreover, the experiments for mixed states showed that distillable coherence can be increased with less demand than entanglement distillation. Our work might be helpful in the remote quantum information processing and quantum control.
We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system while general local quantum operations are permitted on the other, an operational paradigm that we call local quantum-incoherent operations and classical communication (LQICC). We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.
We characterize the operational task of environment-assisted distillation of quantum coherence under different sets of free operations when only a finite supply of copies of a given state is available. We first evaluate the one-shot assisted distillable coherence exactly, and introduce a semidefinite programming bound on it in terms of a smooth entropic quantity. We prove the bound to be tight for all systems in dimensions 2 and 3, which allows us to obtain computable expressions for the one-shot rate of distillation, establish an analytical expression for the best achievable fidelity of assisted distillation for any finite number of copies, and fully solve the problem of asymptotic zero-error assisted distillation for qubit and qutrit systems. Our characterization shows that all relevant sets of free operations in the resource theory of coherence have exactly the same power in the task of one-shot assisted coherence distillation, and furthermore resolves a conjecture regarding the additivity of coherence of assistance in dimension 3.
The remarkable phenomenon of catalyst tells us that adding a catalyst could help state transformation. In this paper, we consider the problem of catalyst-assisted probabilistic coherence distillation for mixed states under strictly incoherent operations. To this end, we first present the necessary and sufficient conditions for distilling a target pure coherent state from an initial mixed state via stochastic strictly incoherent operations and the maximal probability of obtaining the target pure state from the initial state. With the help of these results, we present the necessary and sufficient conditions for the existence of a catalyst that increases the maximal transformation probability.
Quantum key distribution (QKD) enables unconditionally secure communication guaranteed by the laws of physics. The last decades have seen tremendous efforts in making this technology feasible under real-life conditions, with implementations bridging ever longer distances and creating ever higher secure key rates. Readily deployed glass fiber connections are a natural choice for distributing the single photons necessary for QKD both in intra- and intercity links. Any fiber-based implementation however experiences chromatic dispersion which deteriorates temporal detection precision. This ultimately limits maximum distance and achievable key rate of such QKD systems. In this work, we address this limitation to both maximum distance and key rate and present an effective and easy-to-implement method to overcome chromatic dispersion effects. By exploiting the entangled photons frequency correlations, we make use of nonlocal dispersion compensation to improve the photons temporal correlations. Our experiment is the first implementation utilizing the inherently quantum-mechanical effect of nonlocal dispersion compensation for QKD in this way. We experimentally show an increase in key rate from 6.1 to 228.3 bits/s over 6.46 km of telecom fiber. Our approach is extendable to arbitrary fiber lengths and dispersion values, resulting in substantially increased key rates and even enabling QKD in the first place where strong dispersion would otherwise frustrate key extraction at all.
Detecting a change point is a crucial task in statistics that has been recently extended to the quantum realm. A source state generator that emits a series of single photons in a default state suffers an alteration at some point and starts to emit photons in a mutated state. The problem consists in identifying the point where the change took place. In this work, we consider a learning agent that applies Bayesian inference on experimental data to solve this problem. This learning machine adjusts the measurement over each photon according to the past experimental results finds the change position in an online fashion. Our results show that the local-detection success probability can be largely improved by using such a machine learning technique. This protocol provides a tool for improvement in many applications where a sequence of identical quantum states is required.