No Arabic abstract
We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as super-excited states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating the power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called calm excited states as well. We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation.
Big Bang Nucleosynthesis imposes stringent bounds on light sterile neutrinos mixing with the active flavors. Here we discuss how altered dispersion relations can weaken such bounds and allow compatibility of new sterile neutrino degrees of freedom with a successful generation of the light elements in the early Universe.
Modified dispersion relations from effective field theory are shown to alter the Chandrasekhar mass limit. At exceptionally high densities, the modifications affect the pressure of a degenerate electron gas and can increase or decrease the mass limit, depending on the sign of the modifications. These changes to the mass limit are unlikely to be relevant for the astrophysics of white dwarf or neutron stars due to well-known dynamical instabilities that occur at lower densities. Generalizations to frameworks other than effective field theory are discussed.
We describe the Hamilton geometry of the phase space of particles whose motion is characterised by general dispersion relations. In this framework spacetime and momentum space are naturally curved and intertwined, allowing for a simultaneous description of both spacetime curvature and non-trivial momentum space geometry. We consider as explicit examples two models for Planck-scale modified dispersion relations, inspired from the $q$-de Sitter and $kappa$-Poincare quantum groups. In the first case we find the expressions for the momentum and position dependent curvature of spacetime and momentum space, while for the second case the manifold is flat and only the momentum space possesses a nonzero, momentum dependent curvature. In contrast, for a dispersion relation that is induced by a spacetime metric, as in General Relativity, the Hamilton geometry yields a flat momentum space and the usual curved spacetime geometry with only position dependent geometric objects.
Quantum gravity phenomenology suggests an effective modification of the general relativistic dispersion relation of freely falling point particles caused by an underlying theory of quantum gravity. Here we analyse the consequences of modifications of the general relativistic dispersion on the geometry of spacetime in the language of Hamilton geometry. The dispersion relation is interpreted as the Hamiltonian which determines the motion of point particles. It is a function on the cotangent bundle of spacetime, i.e. on phase space, and determines the geometry of phase space completely, in a similar way as the metric determines the geometry of spacetime in general relativity. After a review of the general Hamilton geometry of phase space we discuss two examples. The phase space geometry of the metric Hamiltonian $H_g(x,p)=g^{ab}(x)p_ap_b$ and the phase space geometry of the first order q-de Sitter dispersion relation of the form $H_{qDS}(x,p)=g^{ab}(x)p_ap_b + ell G^{abc}(x)p_ap_bp_c$ which is suggested from quantum gravity phenomenology. We will see that for the metric Hamiltonian $H_g$ the geometry of phase space is equivalent to the standard metric spacetime geometry from general relativity. For the q-de Sitter Hamiltonian $H_{qDS}$ the Hamilton equations of motion for point particles do not become autoparallels but contain a force term, the momentum space part of phase space is curved and the curvature of spacetime becomes momentum dependent.
We analyse the double-discontinuities of the four-point correlator of the stress-tensor multiplet in N=4 SYM at large t Hooft coupling and at order $1/N^4$, as a way to access one-loop effects in the dual supergravity theory. From these singularities we extract CFT-data by using two inversion procedures: one based on a recently proposed Froissart-Gribov inversion integral, and the other based on large spin perturbation theory. Both procedures lead to the same results and are shown to be equivalent more generally. Our computation parallels the standard S-matrix reconstruction via dispersion relations. In a suitable limit, the result of the conformal field theory calculation is compared with the one-loop graviton scattering amplitude in ten-dimensional IIB supergravity in flat space, finding perfect agreement.