Intermediate state dependence of the photoelectron circular dichroism of fenchone observed via femtosecond resonance-enhanced multi-photon ionization


Abstract in English

The intermediate state dependence of photoelectron circular dichroism (PECD) in resonance-enhanced multi-photon ionization of fenchone in the gas phase is experimentally studied. By scanning the excitation wavelength from 359 to 431 nm we simultaneously excite up to three electronically distinct resonances. In the PECD experiment performed with a broadband femtosecond laser their respective contributions to the photoelectron spectrum can be resolved. High-resolution spectroscopy allows us to identify two of the resonances as belonging to the B- and C-bands, which involve excitation to states with 3s and 3p Rydberg character, respectively. We observe a sign change in the PECD signal depending on which electronic state is used as an intermediate. Additionally, scanning the laser wavelength reveals a decrease of PECD magnitude with increasing photoelectron energy for the 3s state.

Download