No Arabic abstract
The strong-interaction limit of the Hohenberg-Kohn functional defines a multimarginal optimal transport problem with Coulomb cost. From physical arguments, the solution of this limit is expected to yield strictly-correlated particle positions, related to each other by co-motion functions (or optimal maps), but the existence of such a deterministic solution in the general three-dimensional case is still an open question. A conjecture for the co-motion functions for radially symmetric densities was presented in Phys.~Rev.~A {bf 75}, 042511 (2007), and later used to build approximate exchange-correlation functionals for electrons confined in low-density quantum dots. Colombo and Stra [Math.~Models Methods Appl.~Sci., {bf 26} 1025 (2016)] have recently shown that these conjectured maps are not always optimal. Here we revisit the whole issue both from the formal and numerical point of view, finding that even if the conjectured maps are not always optimal, they still yield an interaction energy (cost) that is numerically very close to the true minimum. We also prove that the functional built from the conjectured maps has the expected functional derivative also when they are not optimal.
We investigate a number of formal properties of the adiabatic strictly-correlated electrons (SCE) functional, relevant for time-dependent potentials and for kernels in linear response time-dependent density functional theory. Among the former, we focus on the compliance to constraints of exact many-body theories, such as the generalised translational invariance and the zero-force theorem. Within the latter, we derive an analytical expression for the adiabatic SCE Hartree exchange-correlation kernel in one dimensional systems, and we compute it numerically for a variety of model densities. We analyse the non-local features of this kernel, particularly the ones that are relevant in tackling problems where kernels derived from local or semi-local functionals are known to fail.
Combining the density functional theory (DFT) and the Gutzwiller variational approach, a LDA+Gutzwiller method is developed to treat the correlated electron systems from {it ab-initio}. All variational parameters are self-consistently determined from total energy minimization. The method is computationally cheaper, yet the quasi-particle spectrum is well described through kinetic energy renormalization. It can be applied equally to the systems from weakly correlated metals to strongly correlated insulators. The calculated results for SrVO$_3$, Fe, Ni and NiO, show dramatic improvement over LDA and LDA+U.
We investigate the possibility of exactly flat non-trivial Chern bands in tight binding models with local (strictly short-ranged) hopping parameters. We demonstrate that while any two of three criteria can be simultaneously realized (exactly flat band, non-zero Chern number, local hopping), it is not possible to simultaneously satisfy all three. Our theorem covers both the case of a single flat band, for which we give a rather elementary proof, as well as the case of multiple degenerate flat bands. In the latter case, our result is obtained as an application of $K$-theory. We also introduce a class of models on the Lieb lattice with nearest and next-nearest neighbor hopping parameters, which have an isolated exactly flat band of zero Chern number but, in general, non-zero Berry curvature.
Based on recent progress on fermionic exchange symmetry we propose a way to develop new functionals for reduced density matrix functional theory. For some settings with an odd number of electrons, by assuming saturation of the inequalities stemming from the generalized Pauli principle, the many-body wave-function can be written explicitly in terms of the natural occupation numbers and natural orbitals. This leads to an expression for the two-particle density matrix and therefore for the correlation energy functional. This functional was then tested for a three-electron Hubbard model where it showed excellent performance both in the weak and strong correlation regimes.
We reexamine the Yang-Yang-Takahashi method of deriving the thermodynamic Bethe ansatz equations which describe strongly correlated electron systems of fundamental physical interest, such as the Hubbard, $s-d$ exchange (Kondo) and Anderson models. It is shown that these equations contain some additional terms which may play an important role in the physics of the systems.