Do you want to publish a course? Click here

Strong Algorithmic Cooling in Large Star-Topology Quantum Registers

69   0   0.0 ( 0 )
 Added by Varad Pande
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cooling the qubit into a pure initial state is crucial for realizing fault-tolerant quantum information processing. Here we envisage a star-topology arrangement of reset and computation qubits for this purpose. The reset qubits cool or purify the computation qubit by transferring its entropy to a heat-bath with the help of a heat-bath algorithmic cooling procedure. By combining standard NMR methods with powerful quantum control techniques, we cool central qubits of two large star topology systems, with 13 and 37 spins respectively. We obtain polarization enhancements by a factor of over 24, and an associated reduction in the spin temperature from 298 K down to 12 K. Exploiting the enhanced polarization of computation qubit, we prepare combination-coherences of orders up to 15. By benchmarking the decay of these coherences we investigate the underlying noise process. Further, we also cool a pair of computation qubits and subsequently prepare them in an effective pure-state.

rate research

Read More

Quantum control of large spin registers is crucial for many applications ranging from spectroscopy to quantum information. A key factor that determines the efficiency of a register for implementing a given information processing task is its network topology. One particular type, called star-topology, involves a central qubit uniformly interacting with a set of ancillary qubits. A particular advantage of the star-topology quantum registers is in the efficient preparation of large entangled states, called NOON states, and their generalized variants. Thanks to the robust generation of such correlated states, spectral simplicity, ease of polarization transfer from ancillary qubits to the central qubit, as well as the availability of large spin-clusters, the star-topology registers have been utilized for several interesting applications over the last few years. Here we review some recent progress with the star-topology registers, particularly via nuclear magnetic resonance methods.
Controlled quantum mechanical devices provide a means of simulating more complex quantum systems exponentially faster than classical computers. Such quantum simulators rely heavily upon being able to prepare the ground state of Hamiltonians, whose properties can be used to calculate correlation functions or even the solution to certain classical computations. While adiabatic preparation remains the primary means of producing such ground states, here we provide a different avenue of preparation: cooling to the ground state via simulated dissipation. This is in direct analogy to contemporary efforts to realize generalized forms of simulated annealing in quantum systems.
125 - David S. Simon , Shuto Osawa , 2018
Linear-optical systems can implement photonic quantum walks that simulate systems with nontrivial topological properties. Here, such photonic walks are used to jointly entangle polarization and winding number. This joint entanglement allows information processing tasks to be performed with interactive access to a wide variety of topological features. Topological considerations are used to suppress errors, with polarization allowing easy measurement and manipulation of qubits. We provide three examples of this approach: production of two-photon systems with entangled winding number (including topological analogs of Bell states), a topologically error-protected optical memory register, and production of entangled topologicallyprotected boundary states. In particular it is shown that a pair of quantum memory registers, entangled in polarization and winding number, with topologically-assisted error suppression can be made with qubits stored in superpositions of winding numbers; as a result, information processing with winding number-based qubits is a viable possibility.
The dynamical evolution of a quantum register of arbitrary length coupled to an environment of arbitrary coherence length is predicted within a relevant model of decoherence. The results are reported for quantum bits (qubits) coupling individually to different environments (`independent decoherence) and qubits interacting collectively with the same reservoir (`collective decoherence). In both cases, explicit decoherence functions are derived for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: we show that this sensitivity is a characteristic of $both$ types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A non-trivial behaviour (recoherence) is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. Our results lead to the identification of decoherence-free states in the collective decoherence limit. These states belong to subspaces of the systems Hilbert space that do not get entangled with the environment, making them ideal elements for the engineering of ``noiseless quantum codes. We also discuss the relations between decoherence of the quantum register and computational complexity based on the new dynamical results obtained for the register density matrix.
We describe and analyze an efficient register-based hybrid quantum computation scheme. Our scheme is based on probabilistic, heralded optical connection among local five-qubit quantum registers. We assume high fidelity local unitary operations within each register, but the error probability for initialization, measurement, and entanglement generation can be very high (~5%). We demonstrate that with a reasonable time overhead our scheme can achieve deterministic non-local coupling gates between arbitrary two registers with very high fidelity, limited only by the imperfections from the local unitary operation. We estimate the clock cycle and the effective error probability for implementation of quantum registers with ion-traps or nitrogen-vacancy (NV) centers. Our new scheme capitalizes on a new efficient two-level pumping scheme that in principle can create Bell pairs with arbitrarily high fidelity. We introduce a Markov chain model to study the stochastic process of entanglement pumping and map it to a deterministic process. Finally we discuss requirements for achieving fault-tolerant operation with our register-based hybrid scheme, and also present an alternative approach to fault-tolerant preparation of GHZ states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا