Do you want to publish a course? Click here

Extended chiral Khuri-Treiman formalism for $etato 3pi$ and the role of the $a_0(980)$, $f_0(980)$ resonances

69   0   0.0 ( 0 )
 Added by Bachir Moussallam
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Recent experiments on $etato 3pi$ decays have provided an extremely precise knowledge of the amplitudes across the Dalitz region which represent stringent constraints on theoretical descriptions. We reconsider an approach in which the low-energy chiral expansion is assumed to be optimally convergent in an unphysical region surrounding the Adler zero, and the amplitude in the physical region is uniquely deduced by an analyticity-based extrapolation using the Khuri-Treiman dispersive formalism. We present an extension of the usual formalism which implements the leading inelastic effects from the $Kbar{K}$ channel in the final-state $pipi$ interaction as well as in the initial-state $etapi$ interaction. The constructed amplitude has an enlarged region of validity and accounts in a realistic way for the influence of the two light scalar resonances $f_0(980)$ and $a_0(980)$ in the dispersive integrals. It is shown that the effect of these resonances in the low energy region of the $eta to 3pi$ decay is not negligible, in particular for the $3pi^0$ mode, and improves the description of the energy variation across the Dalitz plot. Some remarks are made on the scale dependence and the value of the double quark mass ratio $Q$.



rate research

Read More

A reliable determination of the isospin breaking double quark mass ratio from precise experimental data on $etato 3pi$ decays should be based on the chiral expansion of the amplitude supplemented with a Khuri-Treiman type dispersive treatment of the final-state interactions. We discuss an extension of this formalism which allows to estimate the effects of the $a_0(980)$ and $f_0(980)$ resonances and their mixing on the $etato 3pi$ amplitudes. Matrix generalisations of the equations describing elastic $pipi$ rescattering with $I=0,,2$ are introduced which accomodate both $pipi/Kbar{K}$ and $etapi/Kbar{K}$ coupled-channel rescattering. Isospin violation induced by the physical $K^+-K^0$ mass difference and by direct $u-d$ mass difference effects are both accounted for in the dispersive integrals. Numerical solutions are constructed which illustrate how the large resonance effects at 1 GeV propagate down to low energies. They remain small in the physical region of the decay, due to the matching constraints with the NLO chiral amplitude, but they are not negligible and go in the sense of further improving the agreement with experiment for the Dalitz plot parameters.
The $a_0^0(980)-f_0(980)$ mixing is one of the most potential tools to learn about the nature of $a_0^0(980)$ and $f_0(980)$. Using the $f_0(980)$-$a_0^0(980)$ mixing intensity $xi_{af}$ measured recently at BESIII, we calculate the the branching ratio of the the isospin violation decay $J/psi rightarrowgammaeta_c rightarrow gamma pi^0 a_0^0(1450)rightarrow gamma pi^0 a_0^0(980)f_0(500)rightarrow gamma pi^0 f_0(980) f_0(500) rightarrow gamma pi^0 pi^+pi^- pi^+pi^-$. The value of the branching ratio is found to be $O(10^{-6})$, which can be observed with $10^{10}$ $J/psi$ events collected at BESIII. The narrow peak from the $f_0(980)$-$a_0^0(980)$ mixing in the $pi^+pi^-$ mass square spectrum can also be observed. In addition, we study the non-resonant decay $a_0^0(1450)rightarrow f_0(980) pi^+pi^-(text{non-resonant})$, which is dominated by the $a_0^0(980)$-$f_{0}(980)$ mixing. We find that the non-resonant decay $a_0^0(1450)rightarrow f_0(980) pi^+pi^-$ and the decay $a_0^0(1450)rightarrow f_0(980) f_0(500)$ can be combined to measure the mixing intensity $xi_{af}$ in experiment. These decays are the perfect complement to the decay $chi_{c1}rightarrow f_{0}(980)pi^{0}topi^{+}pi^{-}pi^{0}$ which had been observed at BESIII, the observations of them will make the measurement of the mixing intensity $xi_{af}$ more precisely.
We study the $J/psi to gamma pi^+ pi^-$, $gamma pi^0 eta$ reactions from the perspective that they come from the $J/psi to phi(omega) pi^+ pi^-, rho^0pi^0 eta$ reactions, where the $rho^0$, $omega$, and $phi$ get converted into a photon via vector meson dominance. Using models successfully used previously to study the $J/psi to omega (phi) pipi$ reactions, we make determinations of the invariant mass distributions for $pi^+ pi^-$ in the regions of the $f_0(500)$, $f_0(980)$, and for $pi^0 eta$ in the region of the $a_0(980)$. The integrated differential widths lead to branching ratios below present upper bounds, but they are sufficiently large for future check in updated facilities.
131 - F. Aceti , W. H. Liang , E. Oset 2012
We make a theoretical study of the $eta(1405) to pi^{0} f_0(980)$ and $eta(1405) to pi^{0} a_0(980)$ reactions with an aim to determine the isospin violation and the mixing of the $f_0(980)$ and $a_0(980)$ resonances. We make use of the chiral unitary approach where these two resonances appear as composite states of two mesons, dynamically generated by the meson-meson interaction provided by chiral Lagrangians. We obtain a very narrow shape for the $f_0(980)$ production in agreement with a BES experiment. As to the amount of isospin violation, or $f_0(980)$ and $a_0(980)$ mixing, assuming constant vertices for the primary $eta(1405)rightarrow pi^{0}Kbar{K}$ and $eta(1405)rightarrow pi^{0}pi^{0}eta$ production, we find results which are much smaller than found in the recent experimental BES paper, but consistent with results found in two other related BES experiments. We have tried to understand this anomaly by assuming an I=1 mixture in the $eta(1405)$ wave function, but this leads to a much bigger width of the $f_0(980)$ mass distribution than observed experimentally. The problem is solved by using the primary production driven by $eta to K^* bar K$ followed by $K^* to K pi$, which induces an extra singularity in the loop functions needed to produce the $f_0(980)$ and $a_0(980)$ resonances. Improving upon earlier work along the same lines, and using the chiral unitary approach, we can now predict absolute values for the ratio $Gamma(pi^0, pi^+ pi^-)/Gamma(pi^0, pi^0 eta)$ which are in fair agreement with experiment. We also show that the same results hold if we had the $eta(1475)$ resonance or a mixture of these two states, as seems to be the case in the BES experiment.
In this work, we have investigated the process $D_s^+to K^+ K^- pi^+$, taking into account the contributions from the $S$-wave pseudoscalar-pseudoscalar interaction within the chiral unitary approach, and also the intermediate $phi$ resonance. By analyzing the BESIII and {it BABAR} measurements, we conclude that the $f_0(980)$ state, dynamically generated from the $S$-wave pseudoscalar-pseudoscalar interaction, gives the dominant contribution close to the $K^+K^-$ threshold in the $K^+K^-$ invariant mass distribution of the decay $D_s^+to K^+ K^- pi^+$ in $S$-wave. On the other hand, our results imply that the lineshape adopted by BESIII and {it BABAR} for the resonances $a_0(980)$ and $f_0(980)$ is not advisable in the fit to the data close to the $K^+K^-$ threshold.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا