Do you want to publish a course? Click here

Confinement of Half-quantized Vortices in Coherently Coupled Bose-Einstein Condensates: Simulating Quark Confinement in QCD

55   0   0.0 ( 0 )
 Added by Minoru Eto
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that the confinement of half-quantized vortices (HQVs) in coherently coupled Bose-Einstein condensates (BECs) simulates certain aspects of the confinement in $SU(2)$ quantum chromodynamics (QCD) in 2+1 space-time dimensions. By identifying the circulation of superfluid velocity as the baryon number and the relative phase between two components as a dual gluon, we identify HQVs in a single component as electrically charged particles with a half baryon number. Further, we show that only singlet states of the relative phase of two components can stably exist as bound states of vortices, that is, a pair of vortices in each component (a baryon) and a pair of a vortex and an antivortex in the same component (a meson). We then study the dynamics of a baryon and meson; baryon is static at the equilibrium and rotates once it deviates from the equilibrium, while a meson moves with constant velocity. For both baryon and meson we verify a linear confinement and determine that they are broken, thus creating other baryons or mesons in the middle when two constituent vortices are separated by more than some critical distance, resembling QCD.



rate research

Read More

The dynamic behavior of vortex pairs in two-component coherently (Rabi) coupled Bose-Einstein condensates is investigated in the presence of harmonic trapping. We discuss the role of the surface tension associated with the domain wall connecting two vortices in condensates of atoms occupying different spin states and its effect on the precession of the vortex pair. The results, based on the numerical solution of the Gross-Pitaevskii equations, are compared with the predictions of an analytical macroscopic model and are discussed as a function of the size of the pair, the Rabi coupling and the inter-component interaction. We show that the increase of the Rabi coupling results in the disintegration of the domain wall into smaller pieces, connecting vortices of new-created vortex pairs. The resulting scenario is the analogue of quark confinement and string breaking in quantum chromodynamics.
160 - M. Merkl , A. Jacob , F. E. Zimmer 2009
In the presence of a laser-induced spin-orbit coupling an interacting ultra cold spinor Bose-Einstein condensate may acquire a quasi-relativistic character described by a non-linear Dirac-like equation. We show that as a result of the spin-orbit coupling and the non-linearity the condensate may become self-trapped, resembling the so-called chiral confinement, previously studied in the context of the massive Thirring model. We first consider 1D geometries where the self-confined condensates present an intriguing sinusoidal dependence on the inter-particle interactions. We further show that multi-dimensional chiral-confinement is also possible under appropriate feasible laser arrangements, and discuss the properties of 2D and 3D condensates, which differ significantly from the 1D case.
308 - M. Abad , A. Recati 2013
We present a self-consistent study of coherently coupled two-component Bose-Einstein condensates. Finite spin-flipping coupling changes the first order demixing phase transition for Bose-Bose mixtures to a second order phase transition between an unpolarized and a polarized state. We analise the excitation spectrum and the structure factor along the transition for a homogeneous system. We discuss the main differences at the transition between a coherent coupled gas and a two-component mixture. We finally study the ground state when spin-(in)dependent trapping potentials are added to the system, focusing on optical lattices, which give rise to interesting new configurations.
121 - Marta Abad 2015
We study the stability of persistent currents in a coherently coupled quasi-2D Bose-Einstein condensate confined in a ring trap at T=0. By numerically solving Gross-Pitaevskii equations and by analyzing the excitation spectrum obtained from diagonalization of the Bogoliubov-de Gennes matrix, we describe the mechanisms responsible for the decay of the persistent currents depending on the values of the interaction coupling constants and the Rabi frequency. When the unpolarized system decays due to an energetic instability in the density channel, the spectrum may develop a roton-like minimum, which gives rise to the finite wavelength excitation necessary for vortex nucleation at the inner surface. When decay in the unpolarized system is driven by spin-density excitations, the finite wavelength naturally arises from the existence of a gap in the excitation spectrum. In the polarized phase of the coherently coupled condensate, there is an hybridization of the excitation modes that leads to complex decay dynamics. In particular, close to the phase transition, a state of broken rotational symmetry is found to be stationary and stable.
We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongate quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا