Do you want to publish a course? Click here

Well-posedness for a moving boundary model of an evaporation front in a porous medium

52   0   0.0 ( 0 )
 Added by Friedrich Lippoth
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider a two-phase elliptic-parabolic moving boundary problem modelling an evaporation front in a porous medium. Our main result is a proof of short-time existence and uniqueness of strong solutions to the corresponding nonlinear evolution problem in an $L_{p}$-setting. It relies critically on nonstandard optimal regularity results for a linear elliptic-parabolic system with dynamic boundary condition.



rate research

Read More

422 - Hailiang Liu , Jaemin Shin 2009
We prove global well-posedness for the microscopic FENE model under a sharp boundary requirement. The well-posedness of the FENE model that consists of the incompressible Navier-Stokes equation and the Fokker-Planck equation has been studied intensively, mostly with the zero flux boundary condition. Recently it was illustrated by C. Liu and H. Liu [2008, SIAM J. Appl. Math., 68(5):1304--1315] that any preassigned boundary value of a weighted distribution will become redundant once the non-dimensional parameter $b>2$. In this article, we show that for the well-posedness of the microscopic FENE model ($b>2$) the least boundary requirement is that the distribution near boundary needs to approach zero faster than the distance function. Under this condition, it is shown that there exists a unique weak solution in a weighted Sobolev space. Moreover, such a condition still ensures that the distribution is a probability density. The sharpness of this boundary requirement is shown by a construction of infinitely many solutions when the distribution approaches zero as fast as the distance function.
Within the framework of variational modelling we derive a one-phase moving boundary problem describing the motion of a semipermeable membrane enclosing a viscous liquid, driven by osmotic pressure and surface tension of the membrane. For this problem we prove the existence of classical solutions for a short time.
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is established via a contraction mapping argument, taking advantage of a novel approach that utilizes the formula produced by the unified transform method of Fokas for the forced linear heat equation to obtain linear estimates analogous to those previously derived for the nonlinear Schrodinger, Korteweg-de Vries and good Boussinesq equations. Thus, the present work extends the recently introduced unified transform method approach to well-posedness from dispersive equations to diffusive ones.
In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane, with no-slip condition for velocity field, perfect conducting condition for magnetic field and Dirichlet boundary condition for temperature on the boundary. When the viscosity, heat conductivity and magnetic diffusivity coefficients tend to zero in the same rate, there is a boundary layer that is described by a Prandtl-type system. By applying a coordinate transformation in terms of stream function as motivated by the recent work cite{liu2016mhdboundarylayer} on the incompressible MHD system, under the non-degeneracy condition on the tangential magnetic field, we obtain the local-in-time well-posedness of the boundary layer system in weighted Sobolev spaces.
119 - Andrea Giorgini 2019
We study a diffuse interface model describing the motion of two viscous fluids driven by the surface tension in a Hele-Shaw cell. The full system consists of the Cahn-Hilliard equation coupled with the Darcys law. We address the physically relevant case in which the two fluids have different viscosities (unmatched viscosities case) and the free energy density is the logarithmic Helmholtz potential. In dimension two we prove the uniqueness of weak solutions under a regularity criterion, and the existence and uniqueness of global strong solutions. In dimension three we show the existence and uniqueness of strong solutions, which are local in time for large data or global in time for appropriate small data. These results extend the analysis obtained in the matched viscosities case by Giorgini, Grasselli and Wu (Ann. Inst. H. Poincar{e} Anal. Non Lin{e}aire 35 (2018), 318-360). Furthermore, we prove the uniqueness of weak solutions in dimension two by taking the well-known polynomial approximation of the logarithmic potential.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا