No Arabic abstract
We study the flux tubes produced by static quark-antiquark, quark-quark and quark-gluon charges at finite temperature in pure gauge SU(3) lattice QCD. Our sources are static and our lattice correlators are composed of fundamental and adjoint Polyakov loops. To signal the flux tubes, we compute the square densities of the chromomagnetic and chromoelectric fields with plaquettes, in a gauge invariant framework. We study the existence and non-existence of flux tubes both above and below the deconfinement phase transition temperature Tc. Using the Lagrangian density as a probability distribution, we also compute the widths of the flux tubes and study their widening as a function of the intercharge distance. We determine our results with both statistical and systematic errors. Our computations are performed in NVIDIA GPUs using the CUDA language.
The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, as the temperature is increased towards and above the deconfinement temperature $T_c$, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube evaporation above $T_c$ has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.
An attempt to adapt the study of color flux tubes to the case of finite temperature has been made. The field is measured both through the correlator of two Polyakov loops, one of which connected to a plaquette, and through a connected correlator of Wilson loop and plaquette in the spatial sublattice. Still the profile of the flux tube resembles the transverse field distribution around an isolated vortex in an ordinary superconductor. The temperature dependence of all the parameters characterizing the flux tube is investigated.
The finite-temperature behavior of gluon and of Faddeev-Popov-ghost propagators is investigated for pure SU(2) Yang-Mills theory in Landau gauge. We present nonperturbative results, obtained using lattice simulations and Dyson-Schwinger equations. Possible limitations of these two approaches, such as finite-volume effects and truncation artifacts, are extensively discussed. Both methods suggest a very different temperature dependence for the magnetic sector when compared to the electric one. In particular, a clear thermodynamic transition seems to affect only the electric sector. These results imply in particular the confinement of transverse gluons at all temperatures and they can be understood inside the framework of the so-called Gribov-Zwanziger scenario of confinement.
We address the interpretation of the Landau gauge gluon propagator at finite temperature as a massive type bosonic propagator. Using pure gauge SU(3) lattice simulations at a fixed lattice volume $sim(6.5fm)^3$, we compute the electric and magnetic form factors, extract a gluon mass from Yukawa-like fits, and study its temperature dependence. This is relevant both for the Debye screening at high temperature $T$ and for confinement at low $T$.
We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nt=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a^2) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on Nt=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an Appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we also incorporated an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects. We estimate these systematic effects to be about 10 MeV