Do you want to publish a course? Click here

Phase space curvature in spin-orbit coupled ultracold atom systems

109   0   0.0 ( 0 )
 Added by Jogundas Armaitis
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation, and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wavepackets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit coupled system can be viewed as a direct effect of the phase-space Berry curvature.



rate research

Read More

Spin-orbit coupling (SOC) is an essential ingredient in topological materials, conventional and quantum-gas based alike.~Engineered spin-orbit coupling in ultracold atom systems --unique in their experimental control and measurement opportunities-- provides a major opportunity to investigate and understand topological phenomena.~Here we experimentally demonstrate and theoretically analyze a technique for controlling SOC in a two component Bose-Einstein condensate using amplitude-modulated Raman coupling.
179 - S.-W. Su , S.-C. Gou , I.-K. Liu 2014
We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where the detuning from resonance depends on position. The resulting spin-orbit coupled BEC phase-separates into domains, each of which contain density modulations - stripes - aligned either along the x or y direction. In each domain, the stripe orientation is determined by the sign of the local detuning. When these stripes have mismatched spatial periods along domain boundaries, non-trivial topological spin textures form at the interface, including skyrmions-like spin vortices and anti-vortices. In contrast to vortices present in conventional rotating BECs, these spin-vortices are stable topological defects that are not present in the corresponding homogenous stripe-phase spin-orbit coupled BECs.
Engineered spin-orbit coupling (SOC) in cold atom systems can aid in the study of novel synthetic materials and complex condensed matter phenomena. Despite great advances, alkali atom SOC systems are hindered by heating from spontaneous emission, which limits the observation of many-body effects, motivating research into potential alternatives. Here we demonstrate that SOC can be engineered to occur naturally in a one-dimensional fermionic 87Sr optical lattice clock (OLC). In contrast to previous SOC experiments, in this work the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states. We use clock spectroscopy to prepare lattice band populations, internal electronic states, and quasimomenta, as well as to produce SOC dynamics. The exceptionally long lifetime of the excited clock state (160 s) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We utilize these capabilities to study Bloch oscillations, spin-momentum locking, and Van Hove singularities in the transition density of states. Our results lay the groundwork for the use of OLCs to probe novel SOC phases of matter.
The Zitterbewegung effect in spin-orbit coupled spin-1 cold atoms is investigated in the presence of the Zeeman field and a harmonic trap. It is shown that the Zeeman field and the harmonic trap have significant effect on the Zitterbewegung oscillatory behaviors. The external Zeeman field could suppress or enhance the Zitterbewegung amplitude and change the frequencies of oscillation. A much slowly damping Zitterbewegung oscillation can be achieved by adjusting both the linear and quadratic Zeeman field. Multi-frequency Zitterbewegung oscillation can be induced by the applied Zeeman field. In the presence of the harmonic trap, the subpackets corresponding to different eigenenergies would always keep coherent, resulting in the persistent Zitterbewegung oscillations. The Zitterbewegung oscillation would display very complicated and irregular oscillation characteristics due to the coexistence of different frequencies of the Zitterbewegung oscillation. Numerical results show that, the Zitterbewegung effect is robust even in the presence of interaction between atoms.
There is an immense effort in search for various types of Weyl semimetals, of which the most fundamental phase consists of the minimal number of i.e. two Weyl points, but is hard to engineer in solids. Here we demonstrate how such fundamental Weyl semimetal can be realized in a maneuverable optical Raman lattice, with which the three-dimensional (3D) spin-orbit (SO) coupling is synthesised for ultracold atoms. In addition, a new novel Weyl phase with coexisting Weyl nodal points and nodal ring is also predicted here, and is shown to be protected by nontrivial linking numbers. We further propose feasible techniques to precisely resolve 3D Weyl band topology through 2D equilibrium and dynamical measurements. This work leads to the first realization of the most fundamental Weyl semimetal band and the 3D SO coupling for ultracold quantum gases, which are respectively the significant issues in the condensed matter and ultracold atom physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا