Do you want to publish a course? Click here

Spin polarization of electrons by ultraintense lasers

335   0   0.0 ( 0 )
 Added by Dario Del Sorbo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a strong magnetic field, ultra-relativistic electrons or positrons undergo spin flip transitions as they radiate, preferentially spin polarizing in one direction -- the Sokolov-Ternov effect. Here we show that this effect could occur very rapidly (in less than 10 fs) in high intensity ($Igtrsim10^{23}$ W/cm$^{2}$) laser-matter interactions, resulting in a high degree of electron spin polarization (70%-90%).



rate research

Read More

The future applications of the short-duration, multi-MeV ion beams produced in the interaction of high-intensity laser pulses with solid targets will require improvements in the conversion efficiency, peak ion energy, beam monochromaticity, and collimation. Regimes based on Radiation Pressure Acceleration (RPA) might be the dominant ones at ultrahigh intensities and be most suitable for specific applications. This regime may be reached already with present-day intensities using circularly polarized (CP) pulses thanks to the suppression of fast electron generation, so that RPA dominates over sheath acceleration at any intensity. We present a brief review of previous work on RPA with CP pulses and a few recent results. Parametric studies in one dimension were performed to identify the optimal thickness of foil targets for RPA and to study the effect of a short-scalelength preplasma. Three-dimensional simulations showed the importance of ``flat-top radial intensity profiles to minimise the rarefaction of thin targets and to address the issue of angular momentum conservation and absorption.
173 - Angel Paredes , David Novoa , 2014
We study the effects of the quantum vacuum on the propagation of a Gaussian laser beam in vacuum. By means of a double perturbative expansion in paraxiality and quantum vacuum terms, we provide analytical expressions for the self-induced transverse mode mixing, rotation of polarization, and third harmonic generarion. We discuss the possibility of searching for the self-induced, spatially dependent phase shift of a multipetawatt laser pulse, which may allow the testing of quantum electrodynamics and new physics models, such as Born-Infeld theory and models involving new minicharged or axion-like particles, in parametric regions that have not yet been explored in laboratory experiments.
100 - X. H. Yang , H. B. Zhuo , H. Xu 2016
Generation of relativistic electron (RE) beams during ultraintense laser pulse interaction with plasma targets is studied by collisional particle-in-cell (PIC) simulations. Strong magnetic field with transverse scale length of several local plasma skin depths, associated with RE currents propagation in the target, is generated by filamentation instability (FI) in collisional plasmas, inducing a great enhancement of the divergence of REs compared to that of collisionless cases. Such effect is increased with laser intensity and target charge state, suggesting that the RE divergence might be improved by using low-Z materials under appropriate laser intensities in future fast ignition experiments and in other applications of laser-driven electron beams.
75 - Chul Min Kim 2017
A detector undergoing a huge acceleration measures a thermal distribution with the Unruh temperature out of the Minkowski vacuum. Though such huge accelerations occur naturally in astrophysics and gravity, one may design untraintense laser facility to detect the Unruh effect and simulate laboratory astrophysics. We derive the QED vacuum polarization and the vacuum persistence amplitude as well as the Schwinger pair creation in an accelerating frame when a constant electric field exists in the Minkowski spacetime. We advance a thermal interpretation of Schwinger pair creation in the Rindler space.
Spin-polarization of an ultrarelativistic electron beam head-on colliding with an ultraintense laser pulse is investigated in the quantum radiation-reaction regime. We develop a Monte-Carlo method to model electron radiative spin effects in arbitrary electromagnetic fields by employing spin-resolved radiation probabilities in the local constant field approximation. Due to spin-dependent radiation reaction, the applied elliptically polarized laser pulse polarizes the initially unpolarized electron beam and splits it along the propagation direction into two oppositely transversely polarized parts with a splitting angle of about tens of milliradians. Thus, a dense electron beam with above 70% polarization can be generated in tens of femtoseconds. The proposed method demonstrates a way for relativistic electron beam polarization with currently achievable laser facilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا