We study in the present article the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda | abla h(t,x)|^2 +sqrt{D}, eta(t,x), qquad (t,x)inmathbb{R}_+timesmathbb{R}^d $$ in $dge 3$ dimensions in the perturbative regime, i.e. for $lambda>0$ small enough and a smooth, bounded, integrable initial condition $h_0=h(t=0,cdot)$. The forcing term $eta$ in the right-hand side is a regularized space-time white noise. The exponential of $h$ -- its so-called Cole-Hopf transform -- is known to satisfy a linear PDE with multiplicative noise. We prove a large-scale diffusive limit for the solution, in particular a time-integrated heat-kernel behavior for the covariance in a parabolic scaling. The proof is based on a rigorous implementation of K. Wilsons renormalization group scheme. A double cluster/momentum-decoupling expansion allows for perturbative estimates of the bare resolvent of the Cole-Hopf linear PDE in the small-field region where the noise is not too large, following the broad lines of Iagolnitzer-Magnen. Standard large deviation estimates for $eta$ make it possible to extend the above estimates to the large-field region. Finally, we show, by resumming all the by-products of the expansion, that the solution $h$ may be written in the large-scale limit (after a suitable Galilei transformation) as a small perturbation of the solution of the underlying linear Edwards-Wilkinson model ($lambda=0$) with renormalized coefficients $ u_{eff}= u+O(lambda^2),D_{eff}=D+O(lambda^2)$.