No Arabic abstract
The MiniBooNE-DM collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8 GeV Booster proton beam in a dedicated run with $1.86 times 10^{20}$ protons delivered to a steel beam dump. The MiniBooNE detector, 490~m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark-matter cross section parameter, $Y=epsilon^2alpha_D(m_chi/m_V)^4 lesssim10^{-8}$, for $alpha_D=0.5$ and for dark-matter masses of $0.01<m_chi<0.3~mathrm{GeV}$ in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.
A search for sub-GeV dark matter produced from collisions of the Fermilab 8 GeV Booster protons with a steel beam dump was performed by the MiniBooNE-DM Collaboration using data from $1.86 times 10^{20}$ protons on target in a dedicated run. The MiniBooNE detector, consisting of 818 tons of mineral oil and located 490 meters downstream of the beam dump, is sensitive to a variety of dark matter initiated scattering reactions. Three dark matter interactions are considered for this analysis: elastic scattering off nucleons, inelastic neutral pion production, and elastic scattering off electrons. Multiple data sets were used to constrain flux and systematic errors, and time-of-flight information was employed to increase sensitivity to higher dark matter masses. No excess from the background predictions was observed, and 90$%$ confidence level limits were set on the vector portal and leptophobic dark matter models. New parameter space is excluded in the vector portal dark matter model with a dark matter mass between 5 and 50$,mathrm{MeV},c^{-2}$. The reduced neutrino flux allowed to test if the MiniBooNE neutrino excess scales with the production of neutrinos. No excess of neutrino oscillation events were measured ruling out models that scale solely by number of protons on target independent of beam configuration at 4.6$sigma$.
A novel mechanism to produce and detect Light Dark Matter in experiments making use of GeV electrons (and positrons) impinging on a thick target (beam-dump) is proposed. The positron-rich environment produced by the electromagnetic shower allows to produce an $A^prime$ via non-resonant ($e^+ + e^- to gamma + A^prime$) and resonant ($e^+ + e^- to A^prime$) annihilation on atomic electrons. The latter mechanism, for some selected kinematics, results in a larger sensitivity with respect to limits derived by the commonly used $A^prime-strahlung$. This idea, applied to Beam Dump Experiments and {it active} Beam Dump Experiments pushes down the current limits by an order of magnitude.
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for a $sim$1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10$^{22}$ electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle $chi$ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the results obtained with a prototype detector running at INFN-LNS (Italy), while the beam-related background has been evaluated by GEANT4 Monte Carlo simulations. The proposed experiment will be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments in the MeV-GeV DM mass range by up to two orders of magnitude.
High energy positron annihilation is a viable mechanism to produce dark photons ($A^prime$). This reaction plays a significant role in beam-dump experiments using experiments using multi-GeV electron-beams on thick targets by enhancing the sensitivity to $A^prime$ production. The positrons produced by the electromagnetic shower can produce an $A^prime$ via non-resonant ($e^+ + e^- to gamma + A^prime$) and resonant ($e^+ + e^- to A^prime$) annihilation on atomic electrons. For visible decays, the contribution of resonant annihilation results in a larger sensitivity with respect to limits derived by the commonly used $A^prime$-strahlung in certain kinematic regions. When included in the evaluation of the E137 beam-dump experiment reach, positron annihilation pushes the current limit on $varepsilon$ downwards by a factor of two in the range 33 MeV/c$^2<m_{A^prime}<120$ MeV/c$^2$.
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential for a 1 m$^3$ segmented plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls, receiving up to 10$^{22}$ electrons-on-target (EOT) in a one-year period. This experiment (Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at the level of a thousand counts per year, with very low threshold recoil energies ($sim$1 MeV), and limited only by reducible cosmogenic backgrounds. Sensitivity to DM-electron elastic scattering and/or inelastic DM would be below 10 counts per year after requiring all electromagnetic showers in the detector to exceed a few-hundred MeV, which dramatically reduces or altogether eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to finalize the detector design and experimental set up. An existing 0.036 m$^3$ prototype based on the same technology will be used to validate simulations with background rate estimates, driving the necessary R$&$D towards an optimized detector. The final detector design and experimental set up will be presented in a full proposal to be submitted to the next JLab PAC. A fully realized experiment would be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments by two orders of magnitude in the MeV-GeV DM mass range.