No Arabic abstract
The ISS-based CALET (CALorimetric Electron Telescope) detector can play an important role in indirect search for Dark Matter (DM), measuring the electron+positron flux in the TeV region for the first time directly. With its fine energy resolution of approximately $2%$ and good proton rejection ratio ($1:10^5$) it has the potential to search for fine structures in the Cosmic Ray (CR) electron spectrum. In this context we discuss the ability of CALET to discern between signals originating from astrophysical sources and DM decay or annihilation. We fit a parametrization of the local interstellar electron and positron spectra to current measurements, with either a pulsar or 3-body decay of fermionic DM as the extra source causing the positron excess. The expected CALET data for scenarios in which DM decay explains the excess are calculated and analyzed. The signal from this particular 3-body DM decay which can explain the recent measurements of from the AMS$-02$ experiment is shown to be distinguishable from a single pulsar source causing the positron excess by 5 years of observation with CALET, based on the shape of the spectrum. We also study the constraints from extra-galactic diffuse $gamma$-ray data on this DM-only explanation of the positron excess and show that especially for the possibly remaining parameter space a clearly identifiable signature in the CR electron spectrum exists.
With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses six years of IceCube data focusing on muon neutrino track events from the Northern Hemisphere, while the second analysis uses two years of cascade events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: We obtain the strongest constraint to date, excluding lifetimes shorter than $10^{28},$s at $90%$ CL for dark matter masses above $10,$TeV.
We propose an X-ray mission called Xenia to search for decaying superweakly interacting Dark Matter particles (super-WIMP) with a mass in the keV range. The mission and its observation plan are capable of providing a major break through in our understanding of the nature of Dark Matter (DM). It will confirm, or reject, predictions of a number of particle physics models by increasing the sensitivity of the search for decaying DM by about two orders of magnitude through a wide-field imaging X-ray spectrometer in combination with a dedicated observation program. The proposed mission will provide unique limits on the mixing angle and mass of neutral leptons, right handed partners of neutrinos, which are important Dark Matter candidates. The existence of these particles is strongly motivated by observed neutrino flavor oscillations and the problem of baryon asymmetry of the Universe. In super-WIMP models, the details of the formation of the cosmic web are different from those of LambdaCDM. The proposed mission will, in addition to the search for decaying Dark Matter, provide crucial insight into the nature of DM by studying the structure of the cosmic web. This will be done by searching for missing baryons in emission, and by using gamma-ray bursts as backlight to observe the warm-hot intergalactic media in absorption.
The discovery of high-energy astrophysical neutrinos by IceCube has opened a new window to the Universe. However, the origin of these neutrinos is still a mystery, and some of them could be a result of dark matter interactions such as decay. Next generation gigaton water-Cherenkov neutrino telescope, KM3NeT, is expected to offer significantly improved energy resolution in the cascade channel, and advantageous viewing condition to the Galactic Center; both important for searches of dark matter decay signals. We study the sensitivity of KM3NeT on dark matter decays by performing a mock likelihood analysis for both cascade and track type events, taking into account both angular and energy information. We find that, combining both channels, KM3NeT is expected to produce world leading limits on dark matter decay lifetime in the PeV mass range, and could test some of the dark matter hints in the current IceCube data.
We perform a detailed study of dark matter production via freeze-in under the assumption that some fluid dominates the early Universe before depositing its energy to the plasma causing entropy injection. As a dark matter candidate we consider a fermionic singlet that is produced through its interactions with a scalar particle in the thermal plasma. The fluid alters the expansion rate of the Universe, as well as the scaling of the temperature, which significantly affects the evolution of both the number density and the mean momentum of the dark matter particle. We identify and discuss in detail the effects of the evolution of these quantities by considering several examples representing dark matter production at different stages of expansion and entropy injection. We find that, since the dark matter density is reduced when the entropy injection to the plasma continues after freeze-in, in order to reproduce its observational value an enhanced rate of dark matter production is required relative to standard cosmology. Furthermore, the impact of the assumed non-standard cosmological history on the dark matter mean momentum can result in either a relaxed or a tightened bound on the dark matter mass from large structure formation data.
New bounds on decaying Dark Matter are derived from the gamma-ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range of dark matter masses and a variety of decay modes, excluding half-lives up to about 10^26 to few 10^27 seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e+/- spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices are adopted. We also discuss future prospects for CTA bounds from Fornax which, contrary to the present H.E.S.S. constraints of (ii), may allow for an interesting improvement and may become better than those from the current or future extragalactic Fermi data.