No Arabic abstract
We present a study of the effects of collisional dynamics on the formation and detectability of cold tidal streams. A semi-analytical model for the evolution of the stellar mass function was implemented and coupled to a fast stellar stream simulation code, as well as the synthetic cluster evolution code EMACSS for the mass evolution as a function of a globular cluster orbit. We find that the increase in the average mass of the escaping stars for clusters close to dissolution has a major effect on the observable stream surface density. As an example, we show that Palomar 5 would have undetectable streams (in an SDSS-like survey) if it was currently three times more massive, despite the fact that a more massive cluster loses stars at a higher rate. This bias due to the preferential escape of low-mass stars is an alternative explanation for the absence of tails near massive clusters, than a dark matter halo associated with the cluster. We explore the orbits of a large sample of Milky Way globular clusters and derive their initial masses and remaining mass fraction. Using properties of known tidal tails we explore regions of parameter space that favour the detectability of a stream. A list of high probability candidates is discussed
Stellar tidal streams are sensitive tracers of the properties of the gravitational potential in which they orbit and detailed observations of their density structure can be used to place stringent constraints on fluctuations in the potential caused by, e.g., the expected populations of dark matter subhalos in the standard cold dark matter paradigm (CDM). Simulations of the evolution of stellar streams in live $N$-body halos without low-mass dark-matter subhalos, however, indicate that streams exhibit significant perturbations on small scales even in the absence of substructure. Here we demonstrate, using high-resolution $N$-body simulations combined with sophisticated semi-analytic and simple analytic models, that the mass resolutions of $10^4$--$10^5,rm{M}_{odot}$ commonly used to perform such simulations cause spurious stream density variations with a similar magnitude on large scales as those expected from a CDM-like subhalo population and an order of magnitude larger on small, yet observable, scales. We estimate that mass resolutions of $approx100,rm{M}_{odot}$ ($approx1,rm{M}_{odot}$) are necessary for spurious, numerical density variations to be well below the CDM subhalo expectation on large (small) scales. That streams are sensitive to a simulations particle mass down to such small masses indicates that streams are sensitive to dark matter clustering down to these low masses if a significant fraction of the dark matter is clustered or concentrated in this way, for example, in MACHO models with masses of $10$--$100,rm{M}_{odot}$.
Significant effort has been recently devoted to modeling visual relations. This has mostly addressed the design of architectures, typically by adding parameters and increasing model complexity. However, visual relation learning is a long-tailed problem, due to the combinatorial nature of joint reasoning about groups of objects. Increasing model complexity is, in general, ill-suited for long-tailed problems due to their tendency to overfit. In this paper, we explore an alternative hypothesis, denoted the Devil is in the Tails. Under this hypothesis, better performance is achieved by keeping the model simple but improving its ability to cope with long-tailed distributions. To test this hypothesis, we devise a new approach for training visual relationships models, which is inspired by state-of-the-art long-tailed recognition literature. This is based on an iterative decoupled training scheme, denoted Decoupled Training for Devil in the Tails (DT2). DT2 employs a novel sampling approach, Alternating Class-Balanced Sampling (ACBS), to capture the interplay between the long-tailed entity and predicate distributions of visual relations. Results show that, with an extremely simple architecture, DT2-ACBS significantly outperforms much more complex state-of-the-art methods on scene graph generation tasks. This suggests that the development of sophisticated models must be considered in tandem with the long-tailed nature of the problem.
We present evidence for mass segregation in the outer-halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope imaging, we analyze the radial dependence of the stellar mass function in the clusters inner 39.2 pc in the mass range of 0.53-0.80 M_sun, ranging from the main-sequence turn-off down to a V-band magnitude of 27.1 mag. The mass function at different radii is well approximated by a power law and rises from a shallow slope of 0.6+/-0.2 in the clusters core to a slope of 1.6+/-0.3 beyond 18.6 pc. This is seemingly in conflict with the finding by Beccari et al. (2011), who interpret the clusters non-segregated population of (more massive) blue straggler stars, compared to (less massive) red giants and horizontal branch stars, as evidence that the cluster has not experienced dynamical segregation yet. We discuss how both results can be reconciled. Our findings indicate that the cluster was either primordially mass-segregated and/or used to be significantly more compact in the past. For the latter case, we propose tidal shocks as the mechanism driving the clusters expansion, which would imply that Palomar 14 is on a highly eccentric orbit. Conversely, if the cluster formed already extended and with primordial mass segregation, this could support an accretion origin of the cluster.
We report the detection of a pair of degree-long tidal tails associated with the globular cluster Palomar 14, using images obtained at the CFHT. We reveal a power-law departure from a King profile at large distances to the cluster center. The density map constructed with the optimal matched filter technique shows a nearly symmetrical and elongated distribution of stars on both sides of the cluster, forming a S-shape characteristic of mass loss. This evidence may be the telltale signature of tidal stripping in action. This, together with its large Galactocentric distance, imposes strong constraints on its orbit and/or origin: i) it must follow an external orbit confined to the peripheral region of the Galactic halo and/or ii) it formed in a satellite galaxy later accreted by the Milky Way.
Using the Optimal Filter Technique applied to Sloan Digital Sky Survey photometry, we have found extended tails stretching about 1 degree (or several tens of half-light radii) from either side of the ultra-faint globular cluster Palomar 1. The tails contain roughly as many stars as does the cluster itself. Using deeper Hubble Space Telescope data, we see that the isophotes twist in a chacteristic S-shape on moving outwards from the cluster centre to the tails. We argue that the main mechanism forming the tails may be relaxation driven evaporation and that Pal 1 may have been accreted from a now disrupted dwarf galaxy ~500 Myr ago.