Do you want to publish a course? Click here

Absence of magnetism in the superconductor Ba2Ti2Fe2As4O: Insights from inelastic neutron scattering measurements and ab initio calculations of phonon spectra

72   0   0.0 ( 0 )
 Added by Mohamed Zbiri
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ba2Ti2Fe2As4O is a self-doped superconductor exhibiting a Tc ~ 21.5 K and containing, distinctively with respect to other Fe-based superconductors, not only [Fe2As2] layers but also conducting [Ti2O] sheets. This compound exhibits a transition at T* ~ 125 K which has tentatively been assigned in the literature to a possible density-wave order. However, the nature of this density wave (whether it is a charge- or spin-induced) is still under debate. Magnetism in Ba2Ti2Fe2As4O has never been experimentally confirmed, which raises the question whether this superconductor might be non-magnetic or exhibiting a very weak magnetism. Here, we report evidence from inelastic neutron scattering (INS) measurements and ab initio calculations of phonon spectra pointing towards absence of magnetism in Ba2Ti2Fe2As4O. The INS measurements did not reveal any noticeable change of the phonon spectra across Tc, neither could magnetic effects be observed within the accessible (Q, E) space, setting Ba2Ti2Fe2As4O as an unconventional superconductor. The effect of magnetism on describing phonon spectra was further investigated by performing ab initio calculations. In this context, non-magnetic calculations reproduced well the measured phonon spectra. Therefore, our results indicate a non-magnetic and unconventional character of the superconductor Ba2Ti2Fe2As4O.



rate research

Read More

We report measurements of the temperature dependence of phonon densities of states in K0.8Fe1.6Se2 using inelastic neutron scattering technique. While cooling down to 150 K, a phonon peak splitting around 25 meV is observed and a new peak appears at 31 meV. The measurements support the recent Raman and infra-red measurements indicating a lowering of symmetry of K0.8Fe1.6Se2 upon cooling below 250 K. Ab-initio phonon calculations have been carried out for K0.8Fe1.6Se2 and KFe2Se2. The comparison of the phonon spectra as obtained from the magnetic as well as non magnetic calculations show pronounced differences. We show that in the two calculations the energy range of the vibrational contribution from both Fe and Se are quite different. We conclude that Fe magnetism is correlated to the phonon dynamics and it plays an important role in stabilizing the structure of K0.8Fe1.6Se2 as well as that of KFe2Se2. The calculations highlight the presence of low energy librational modes in K0.8Fe1.6Se2 as compared to KFe2Se2.
796 - Dallas R. Trinkle 2011
Hydrogen arranges at dislocations in palladium to form nanoscale hydrides, changing the vibrational spectra. An ab initio hydrogen potential energy model versus Pd neighbor distances allows us to predict the vibrational excitations for H from absolute zero up to room temperature adjacent to a partial dislocation and with strain. Using the equilibrium distribution of hydrogen with temperature, we predict excitation spectra to explain new incoherent inelastic neutron-scattering measurements. At 0K, dislocation cores trap H to form nanometer-sized hydrides, while increased temperature dissolves the hydrides and disperses H throughout bulk Pd.
176 - R Mittal , M. Zbiri , H. Schober 2010
Zn(CN)2 and Ni(CN)2 are known for exhibiting anomalous thermal expansion over a wide temperature range. The volume thermal expansion coefficient for the cubic, three dimensionally connected material, Zn(CN)2, is negative ({alpha}V = -51 x 10-6 K-1) while for Ni(CN)2, a tetragonal material, the thermal expansion coefficient is negative in the two dimensionally connected sheets ({alpha}a=-7 x 10-6 K-1), but the overall thermal expansion coefficient is positive ({alpha}V=48 x 10-6 K-1). We have measured the temperature dependence of phonon spectra in these compounds and analyzed them using ab-initio calculations. The spectra of the two compounds show large differences that cannot be explained by simple mass renormalization of the modes involving Zn (65.38 amu) and Ni (58.69 amu) atoms. This reflects the fact that the structure and bonding are quite different in the two compounds. The calculated pressure dependence of the phonon modes and of the thermal expansion coefficient, {alpha}V, are used to understand the anomalous behavior in these compounds. Our ab-initio calculations indicate that it is the low-energy rotational modes in Zn(CN)2, which are shifted to higher energies in Ni(CN)2, that are responsible for the large negative thermal expansion. The measured temperature dependence of the phonon spectra has been used to estimate the total anharmonicity of both compounds. For Zn(CN)2, the temperature- dependent measurements (total anharmonicity), along with our previously reported pressure dependence of the phonon spectra (quasiharmonic), is used to separate the explicit temperature effect at constant volume (intrinsic anharmonicity).
The anharmonic phenomena in Zirconium Hydrides and Deuterides, including {epsilon}-ZrH2, {gamma}-ZrH, and {gamma}-ZrD, have been investigated from aspects of inelastic neutron scattering (INS) and lattice dynamics calculations within the framework of density functional theory (DFT). The observed multiple sharp peaks below harmonic multi-phonon bands in the experimental spectra of all three materials did not show up in the simulated INS spectra based on the harmonic approximation, indicating the existence of strong anharmonicity in those materials and the necessity of further explanations. We present a detailed study on the anharmonicity of zirconium hydrides/deuterides by exploring the 2D potential energy surface of hydrogen/deuterium atoms, and solving the corresponding 2D single-particle Schrodinger equation to get the eigenfrequencies. The obtained results well describe the experimental INS spectra and show harmonic behavior in the fundamental modes and strong anharmonicity at higher energies.
We report inelastic neutron scattering measurements of the phonon spectra in a pure powder sample of the multiferroic material BiFeO3. A high-temperature range was covered to unravel the changes in the phonon dynamics across the Neel (T_N ~ 650 K) and Curie (T_C ~ 1100 K) temperatures. Experimental results are accompanied by ab-initio lattice dynamical simulations of phonon density of states to enable microscopic interpretations of the observed data. The calculations reproduce well the observed vibrational features and provide the partial atomic vibrational components. Our results reveal clearly the signature of three different phase transitions both in the diffraction patterns and phonon spectra. The phonon modes are found to be most affected by the transition at the T_C. The spectroscopic evidence for the existence of a different structural modification just below the decomposition limit (T_D ~ 1240 K) is unambiguous indicating strong structural changes that may be related to oxygen vacancies and concomitant Fe3+ to Fe2+ reduction and spin transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا