Decay of COSAC and Ptolemy Mass Spectra at Comet 67P/Churyumov-Gerasimenko


Abstract in English

The Rosetta lander Philae successfully landed on the nucleus of comet 67P/Churyumov-Gerasimenko on 12 November 2014. Philae is equipped with two gas analyzers: The Cometary Sampling and Composition experiment (COSAC) and the gas chromatograph and mass spectrometer Ptolemy. On 12 to 14 November 2014 both instruments measured the organic composition of the comet nucleus material through seven measurements in sniffing mode during Philaes hopping and at its final landing site Abydos. We compare the temporal evolution of intensities of several ion species identified by both mass spectrometers. For COSAC this is the first analysis of the temporal behaviour of the measured ion species. All ion species showed the highest intensities in the first spectra measured by both instruments about 20 to 30 minutes after Philaes first touchdown at Agilkia, and a decay during the six consecutive measurements at Abydos. Both instruments measured a nearly identical decay of the water peak (m/z 18), and also CO (m/z 28) behaved similarly. In the COSAC measurements the peak at m/z 44 decays much slower than all the other ion species, including the water peak. In particular, the m/z 44 peak decays much slower in the COSAC measurements than in the Ptolemy data. This supports our earlier interpretation that COSAC for the first time analyzed a regolith sample from a cometary nucleus in situ, while Ptolemy measured cometary gas from the ambient coma. The m/z 44 peak measured by COSAC was likely dominated by organic species, whereas the peak measured by Ptolemy was interpreted to be mostly due to $CO_2$. Ion species heavier than m/z 30 tend to decay somewhat slower in the COSAC measurements than in the Ptolemy data, which may be related to differences in the exhaust designs between both instruments.

Download