Do you want to publish a course? Click here

Atomic-scale imaging of few-layer black phosphorus and its reconstructed edge

156   0   0.0 ( 0 )
 Added by Yangjin Lee
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Black phosphorus (BP) has recently emerged as an alternative 2D semiconductor owing to its fascinating electronic properties such as tunable bandgap and high charge carrier mobility. The structural investigation of few-layer BP, such as identification of layer thickness and atomic-scale edge structure, is of great importance to fully understand its electronic and optical properties. Here we report atomic-scale analysis of few-layered BP performed by aberration corrected transmission electron microscopy (TEM). We establish the layer-number-dependent atomic resolution imaging of few-layer BP via TEM imaging and image simulations. The structural modification induced by the electron beam leads to revelation of crystalline edge and formation of BP nanoribbons. Atomic resolution imaging of BP clearly shows the reconstructed zigzag (ZZ) edge structures, which is also corroborated by van der Waals first principles calculations on the edge stability. Our study on the precise identification of BP thickness and atomic-resolution imaging of edge structures will lay the groundwork for investigation of few-layer BP, especially BP in nanostructured forms.



rate research

Read More

Phosphorus atomic chains, the utmost-narrow nanostructures of black phosphorus (BP), are highly relevant to the in-depth development of BP into one-dimensional (1D) regime. In this contribution, we report a top-down route to prepare atomic chains of BP via electron beam sculpting inside a transmission electron microscope (TEM). The growth and dynamics (i.e. rupture and edge migration) of 1D phosphorus chains are experimentally captured for the first time. Furthermore, the dynamic behaviors and associated energetics of the as-formed phosphorus chains are further corroborated by density functional theory (DFT) calculations. The 1D counterpart of BP will serve as a novel platform and inspire further exploration of the versatile properties of BP.
123 - J. Yang , K. Wang , S. Che 2020
We realize p-p-p junctions in few-layer black phosphorus (BP) devices, and use magneto-transport measurements to study the equilibration and transmission of edge states at the interfaces of regions with different charge densities. We observe both full equilibration, where all edge channels equilibrate and are equally partitioned at the interfaces, and partial equilibration, where only equilibration only takes place among modes of the same spin polarization. Furthermore, the inner p-region with low-doping level in the junction can function as a filter for highly doped p-regions which demonstrates gate-tunable transmission of edge channels.
Recent experimental measurements of light absorption in few-layer black phosphorus (BP) reveal a series of high and sharp peaks, interspersed by pairs of lower and broader features. Here, we propose a theoretical model for these excitonic states in few-layer black phosphorus (BP) within a continuum approach for the in-plane degrees of freedom and a tight-binding approximation that accounts for inter-layer couplings. This yields excitonic transitions between different combinations of the sub-bands created by the coupled BP layers, which leads to a series of high and low oscillator strength excitonic states, consistent with the experimentally observed bright and dark exciton peaks, respectively. The main characteristics of such sub-band exciton states, as well as the possibility to control their energies and oscillator strengths via applied electric and magnetic fields, are discussed, towards a full understanding of the excitonic spectrum of few-layer BP and its tunability.
Black phosphorus (BP) is receiving significant attention because of its direct 0.4-1.5 eV layer-dependent band gap and high mobility. Because BP devices rely on exfoliation from bulk crystals, there is a need to understand native impurities and defects in the source material. In particular, samples are typically p-doped, but the source of the doping is not well understood. Here, we use scanning tunneling microscopy and spectroscopy to compare atomic defects of BP samples from two commercial sources. Even though the sources produced crystals with an order of magnitude difference in impurity atoms, we observed a similar defect density and level of p-doping. We attribute these defects to phosphorus vacancies and provide evidence that they are the source of the p-doping. We also compare these native defects to those induced by air exposure and show they are distinct and likely more important for control of electronic structure. These results indicate that impurities in BP play a minor role compared to vacancies, which are prevalent in commercially-available materials, and call for better control of vacancy defects.
Achieving good quality Ohmic contacts to van der Waals materials is a challenge, since at the interface between metal and van der Waals material, different conditions can occur, ranging from the presence of a large energy barrier between the two materials to the metallization of the layered material below the contacts. In black phosphorus (bP), a further challenge is its high reactivity to oxygen and moisture, since the presence of uncontrolled oxidation can substantially change the behavior of the contacts. In this study, we investigate the influence of the metal used for the contacts to bP against the variability between different flakes and different samples, using three of the most used metals as contacts: Chromium, Titanium, and Nickel. Using the transfer length method, from an analysis of ten devices, both at room temperature and at low temperature, Ni results to be the best metal for Ohmic contacts to bP, providing the lowest contact resistance and minimum scattering between different devices. Moreover, we investigate the gate dependence of the current-voltage characteristics of these devices. In the accumulation regime, we observe good linearity for all metals investigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا