Do you want to publish a course? Click here

Galactic Winds with MUSE: A Direct Detection of FeII* Emission from a z = 1.29 Galaxy

89   0   0.0 ( 0 )
 Added by Hayley Finley
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Emission signatures from galactic winds provide an opportunity to directly map the outflowing gas, but this is traditionally challenging because of the low surface brightness. Using deep observations (27 hours) of the Hubble Deep Field South from the Multi Unit Spectroscopic Explorer (MUSE) instrument, we identify signatures of an outflow in both emission and absorption from a spatially resolved galaxy at z = 1.29 with a stellar mass M* = 8 x 10^9 Msun, star formation rate SFR = 77 Msun/yr, and star formation rate surface brightness 1.6 Msun/kpc^2 within the [OII] half-light radius R_1/2,[OII] = 2.76 +- 0.17 kpc. From a component of the strong resonant MgII and FeII absorptions at -350 km/s, we infer a mass outflow rate that is comparable to the star formation rate. We detect non-resonant FeII* emission, at lambda 2626, 2612, 2396, and 2365, at 1.2-2.4-1.5-2.7 x 10^-18 egs s-1 cm-2 respectively. These flux ratios are consistent with the expectations for optically thick gas. By combining the four non-resonant FeII* emission lines, we spatially map the FeII* emission from an individual galaxy for the first time. The FeII* emission has an elliptical morphology that is roughly aligned with the galaxy minor kinematic axis, and its integrated half-light radius R_1/2,FeII* = 4.1 +- 0.4 kpc is 50% larger than the stellar continuum (R_1/2,* = 2.34 +- 0.17 kpc) or the [OII] nebular line. Moreover, the FeII* emission shows a blue wing extending up to -400 km/s, which is more pronounced along the galaxy minor kinematic axis and reveals a C-shaped pattern in a p-v diagram along that axis. These features are consistent with a bi-conical outflow.

rate research

Read More

128 - D. Schaerer , F. Boone , T. Jones 2015
Our objectives are to determine the properties of the interstellar medium (ISM) and of star-formation in typical star-forming galaxies at high redshift. Following up on our previous multi-wavelength observations with HST, Spitzer, Herschel, and the Plateau de Bure Interferometer (PdBI), we have studied a strongly lensed z=2.013 galaxy, the arc behind the galaxy cluster MACS J0451+0006, with ALMA to measure the [CII] 158 micron emission line, one of the main coolants of the ISM. [CII] emission from the southern part of this galaxy is detected at 10 $sigma$. Taking into account strong gravitational lensing, which provides a magnification of $mu=49$, the intrinsic lensing-corrected [CII]158 micron luminosity is $L(CII)=1.2 times 10^8 L_odot$. The observed ratio of [CII]-to-IR emission, $L(CII)/L(FIR) approx (1.2-2.4) times 10^{-3}$, is found to be similar to that in nearby galaxies. The same also holds for the observed ratio $L(CII)/L(CO)=2.3 times 10^3$, which is comparable to that of star-forming galaxies and active galaxy nuclei (AGN) at low redshift. We utilize strong gravitational lensing to extend diagnostic studies of the cold ISM to an order of magnitude lower luminosity ($L(IR) sim (1.1-1.3) times 10^{11} L_odot$) and SFR than previous work at high redshift. While larger samples are needed, our results provide evidence that the cold ISM of typical high redshift galaxies has physical characteristics similar to normal star forming galaxies in the local Universe.
Non-resonant FeII* 2365, 2396, 2612, 2626 emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3x3 mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 FeII* emitters and 50 MgII 2796, 2803 emitters from a sample of 271 [OII] 3726, 3729 emitters with reliable redshifts from z = 0.85 - 1.5 down to 2E-18 (3 sigma) ergs/s/cm^2 (for [OII]), covering the stellar mass range 10^8 - 10^11 Msun. The FeII* and MgII emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 10^9 Msun and star formation rates (SFRs) of <1 Msun/year have MgII emission without accompanying FeII* emission, whereas galaxies with masses above 10^10 Msun and SFRs >10 Msun/year have FeII* emission without accompanying MgII emission. Between these two regimes, galaxies have both MgII and FeII* emission, typically with MgII P-Cygni profiles. Indeed, the MgII profile shows a progression along the main sequence from pure emission to P-Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgII emission profiles have lower star formation rate surface densities than those with either MgII P-Cygni profiles or FeII* emission. These spectral signatures produced through continuum scattering and fluorescence, MgII P-Cygni profiles and FeII* emission, are better candidates for tracing galactic outflows than pure MgII emission, which may originate from HII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.
166 - Jorge A. Zavala 2021
I report a tentative ($sim4sigma$) emission line at $ u=100.84,$GHz from COS-3mm-1, a 3mm-selected galaxy reported by Williams et al. 2019 that is undetected at optical and near infrared wavelengths. The line was found in the ALMA Science Archive after re-processing ALMA band 3 observations targeting a different source. Assuming the line corresponds to the $rm CO(6to5)$ transition, this tentative detection implies a spectroscopic redshift of $z=5.857$, in agreement with the galaxys redshift constraints from multi-wavelength photometry. This would make this object the highest redshift 3mm-selected galaxy and one of the highest redshift dusty star-forming galaxies known to-date. Here, I report the characteristics of this tentative detection and the physical properties that can be inferred assuming the line is real. Finally, I advocate for follow-up observations to corroborate this identification and to confirm the high-redshift nature of this optically-dark dusty star-forming galaxy.
In this paper we present Multi Unit Spectroscopic Explorer (MUSE) integral field unit spectroscopic observations of the $sim70times30$ kpc$^2$ Ly$alpha$ halo around the radio galaxy 4C04.11 at $z = 4.5077$. High-redshift radio galaxies (HzRGs) are hosted by some of the most massive galaxies known at any redshift and are unique markers of concomitant powerful active galactic nucleus (AGN) activity and star formation episodes. We map the emission and kinematics of the Ly$alpha$ across the halo as well as the kinematics and column densities of eight HI absorbing systems at $-3500 < Delta v < 0$ km s$^{-1}$. We find that the strong absorber at $Delta v sim 0,rm km,s^{-1}$ has a high areal coverage ($30times30$ kpc$^2$), being detected across a large extent of the Ly$alpha$ halo, a significant column density gradient along the southwest to northeast direction, and a velocity gradient along the radio jet axis. We propose that the absorbing structure, which is also seen in CIV and NV absorption, represents an outflowing metal-enriched shell driven by a previous AGN or star formation episode within the galaxy and is now caught up by the radio jet, leading to jet-gas interactions. These observations provide evidence that feedback from AGN in some of the most massive galaxies in the early Universe may play an important role in redistributing material and metals in their environments.
We utilize the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) to search for extended Lyman-Alpha emission around the z~6.6 QSO J0305-3150. After carefully subtracting the point-spread-function, we reach a nominal 5-sigma surface brightness limit of SB = 1.9x10$^{-18}$ erg/s/cm$^2$/arcsec$^2$ over a 1 arcsec$^2$ aperture, collapsing 5 wavelength slices centered at the expected location of the redshifted Lyman-Alpha emission (i.e. at 9256 Ang.). Current data suggest the presence (5-sigma, accounting for systematics) of a Lyman-Alpha nebula that extends for 9 kpc around the QSO. This emission is displaced and redshifted by 155 km/s with respect to the location of the QSO host galaxy traced by the [CII] emission line. The total luminosity is L = 3.0x10$^{42}$ erg/s. Our analysis suggests that this emission is unlikely to rise from optically thick clouds illuminated by the ionizing radiation of the QSO. It is more plausible that the Lyman-Alpha emission is due to fluorescence of the highly ionized optically thin gas. This scenario implies a high hydrogen volume density of n$_H$ ~ 6 cm$^{-3}$. In addition, we detect a Lyman-Alpha emitter (LAE) in the immediate vicinity of the QSO: i.e., with a projected separation of 12.5 kpc and a line-of-sight velocity difference of 560 km/s. The luminosity of the LAE is L = 2.1x10$^{42}$ erg/s and its inferred star-formation-rate is SFR ~ 1.3 M$_odot$/yr. The probability of finding such a close LAE is one order of magnitude above the expectations based on the QSO-galaxy cross-correlation function. This discovery is in agreement with a scenario where dissipative interactions favour the rapid build-up of super-massive black holes at early Cosmic times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا