Do you want to publish a course? Click here

Deligne-Lusztig duality and wonderful compactification

89   0   0.0 ( 0 )
 Added by Roman Bezrukavnikov
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We use geometry of the wonderful compactification to obtain a new proof of the relation between Deligne-Lusztig (or Alvis-Curtis) duality for $p$-adic groups and the homological duality. This provides a new way to introduce an involution on the set of irreducible representations of the group which has been defined by A. Zelevinsky for $G=GL(n)$ by A.-M. Aubert in general (less direct geometric approaches to this duality have been developed earlier by Schneider-Stuhler and by the second author). As a byproduct we obtain a description of the Serre functor for representations of a p-adic group.



rate research

Read More

75 - Daniel C. Reuman 2002
Let F be a non-archimedean local field, let L be the maximal unramified extension of F, and let fr be the Frobenius automorphism. Let G be a split connected reductive group over F, and let B(1) be the Bruhat-Tits building associated to G(F). We know that fr acts on G(L) with fixed points G(F). Let I be the Iwahori associated to a chamber in B(1). We have the relative position map, inv, from G(L)/I x G(L)/I to the extended affine Weyl group, W_e of G. If w is in W_e and b is in G(L), then the affine Deligne-Lusztig set Xw(b fr) is {x in G(L)/I : inv(x,b fr(x)) = w}. This paper answers the question of which Xw(b fr) are non-empty for certain G and b.
We formulate a general super duality conjecture on connections between parabolic categories O of modules over Lie superalgebras and Lie algebras of type A, based on a Fock space formalism of their Kazhdan-Lusztig theories which was initiated by Brundan. We show that the Brundan-Kazhdan-Lusztig (BKL) polynomials for Lie superalgebra gl(m|n) in our parabolic setup can be identified with the usual parabolic Kazhdan-Lusztig polynomials. We establish some special cases of the BKL conjecture on the parabolic category O of gl(m|n)-modules and additional results which support the BKL conjecture and super duality conjecture.
76 - Daniel C. Reuman 2003
Rapoport and Kottwitz defined the affine Deligne-Lusztig varieties $X_{tilde{w}}^P(bsigma)$ of a quasisplit connected reductive group $G$ over $F = mathbb{F}_q((t))$ for a parahoric subgroup $P$. They asked which pairs $(b, tilde{w})$ give non-empty varieties, and in these cases what dimensions do these varieties have. This paper answers these questions for $P=I$ an Iwahori subgroup, in the cases $b=1$, $G=SL_2$, $SL_3$, $Sp_4$. This information is used to get a formula for the dimensions of the $X_{tilde{w}}^K(sigma)$ (all shown to be non-empty by Rapoport and Kottwitz) for the above $G$ that supports a general conjecture of Rapoport. Here $K$ is a special maximal compact subgroup.
Expanding the classic works of Kazhdan-Lusztig and Deodhar, we establish bar involutions and canonical (i.e., quasi-parabolic KL) bases on quasi-permutation modules over the type B Hecke algebra, where the bases are parameterized by cosets of (possibly non-parabolic) reflection subgroups of the Weyl group of type B. We formulate an $imath$Schur duality between an $imath$quantum group of type AIII (allowing black nodes in its Satake diagram) and a Hecke algebra of type B acting on a tensor space, providing a common generalization of Jimbo-Schur duality and Bao-Wangs quasi-split $imath$Schur duality. The quasi-parabolic KL bases on quasi-permutation Hecke modules are shown to match with the $imath$canonical basis on the tensor space. An inversion formula for quasi-parabolic KL polynomials is established via the $imath$Schur duality.
204 - Ulrich Goertz , Chia-Fu Yu 2008
We investigate Siegel modular varieties in positive characteristic with Iwahori level structure. On these spaces, we have the Newton stratification, and the Kottwitz-Rapoport stratification; one would like to understand how these stratifications are related to each other. We give a simple description of all KR strata which are entirely contained in the supersingular locus as disjoint unions of Deligne-Lusztig varieties. We also give an explicit numerical description of the KR stratification in terms of abelian varieties.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا