Do you want to publish a course? Click here

Oxygen reduction mechanisms in nanostructured La0.8Sr0.2MnO3 cathodes for Solid Oxide Fuel Cells

105   0   0.0 ( 0 )
 Added by Joaquin Sacanell
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we outline the mechanisms contributing to the oxygen reduction reaction in nanostructured cathodes of La0.8Sr0.2MnO3 (LSM) for Solid Oxide Fuel Cells (SOFC). These cathodes, developed from LSM nanostructured tubes, can be used at lower temperatures compared to microstructured ones, and this is a crucial fact to avoid the degradation of the fuel cell components. This reduction of the operating temperatures stems mainly from two factors: i) the appearance of significant oxide ion diffusion through the cathode material in which the nanostructure plays a key role and ii) an optimized gas phase diffusion of oxygen through the porous structure of the cathode, which becomes negligible. A detailed analysis of our Electrochemical Impedance Spectroscopy supported by first principles calculations point towards an improved overall cathodic performance driven by a fast transport of oxide ions through the cathode surface.



rate research

Read More

A simple method has been used to synthesize nanostructured La0.5Ba0.5CoO3 (LBCO) powders, by confining chemical precursors into the pores of polycarbonate filters. The proposed method allows us to obtain powders formed by crystallites of different sizes, it is scalable and does not involve the use of sophisticated deposition techniques. The area specific polarization resistance of symmetrical cells was studied to analyze the electrochemical behavior of the LBCO nanostructures as cathodes for Solid-Oxide Fuel Cells. We show that the performance is improved by reducing the size of the crystallites, obtaining area specific resistance values of 0.2 Wcm2 at 700C, comparable with newly developed cathodes using novel deposition techniques.
Critical to the development of improved solid oxide fuel cell (SOFC) technology are novel compounds with high oxygen reduction reaction (ORR) catalytic activity and robust stability under cathode operating conditions. Approximately 2145 distinct perovskite compositions are screened for potential use as high activity, stable SOFC cathodes, and it is verified that the screening methodology qualitatively reproduces the experimental activity, stability, and conduction properties of well-studied cathode materials. The calculated oxygen p-band center is used as a first principle-based descriptor of the surface exchange coefficient (k*), which in turn correlates with cathode ORR activity. Convex hull analysis is used under operating conditions in the presence of oxygen, hydrogen, and water vapor to determine thermodynamic stability. This search has yielded 52 potential cathode materials with good predicted stability in typical SOFC operating conditions and predicted k* on par with leading ORR perovskite catalysts. The established trends in predicted k* and stability are used to suggest methods of improving the performance of known promising compounds. The material design strategies and new materials discovered in the computational search help enable the development of high activity, stable compounds for use in future solid oxide fuel cells and related applications.
In this work we studied the influence of particle size and agglomeration in the performance of solid oxide fuel cell cathodes made with nanoparticles of La0.8Sr0.2MnO3. We followed two synthesis routes based on the Liquid Mix method. In both procedures we introduced additional reagents in order to separated the manganite particles. We evaluated cathodic performance by Electrochemical Impedance Spectroscopy in symmetrical (CATHODE/ELECTROLYTE/CATHODE) cells. Particle size was tuned by the temperature used for cathode sintering. Our results show that deagglomeration of the particles, serves to improve the cathodes performance. However, the dependence of the performance with the size of the particles is not clear, as different trends were obtained for each synthesis route. As a common feature, the cathodes with the lowest area specific resistance are the ones sintered at the largest temperature. This result indicates that an additional factor related with the quality of the cathode/electrolyte sintering, is superimposed with the influence of particle size, however further work is needed to clarify this issue. The enhancement obtained by deagglomeration suggest that the use of this kind of methods deserved to be considered to develop high performance electrodes for solid oxide fuel cells.
Oxygen activity and surface stability are two key parameters in the search for advanced materials for intermediate temperature solid oxide electrochemical cells, as overall device performance depends critically on them. In particular $in$ $situ$ and $operando$ characterisation techniques have accelerated the understanding of degradation processes and the identification of active sites, motivating the design and synthesis of improved, nanoengineered materials. In this short topical review we report on the latest developments of various sophisticated $in$ $situ$ and $operando$ characterization techniques, including Transmission and Scanning Electron Microscopy (TEM and SEM), surface-enhanced Raman spectroscopy (SERS), Electrochemical Impedance Spectroscopy (EIS), X-ray Diffraction (XRD) and synchrotron based X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), among others. We focus on their use in three emerging topics, namely: (i) the analysis of general electrochemical reactions and the surface defect chemistry of electrode materials; (ii) the evolution of electrode surfaces achieved by nanoparticle exsolution for enhanced oxygen activity and (iii) the study of surface degradation caused by Sr segregation, leading to reduced durability. For each of these topics we highlight the most remarkable examples recently published. We anticipate that ongoing improvements in the characterisation techniques and especially a complementary use of them by multimodal approaches will lead to improved knowledge of $operando$ processes, hence allowing a significant advancement in cell performance in the near future.
Micro-solid oxide fuel cells based on thin films have strong potential for use in portable power devices. However, devices based on silicon substrates typically involve thin-film metallic electrodes which are unstable at high temperatures. Devices based on bulk metal substrates overcome these limitations, though performance is hindered by the challenge of growing state-of-the-art epitaxial materials on metals. Here, we demonstrate for the first time the growth of epitaxial cathode materials on metal substrates (stainless steel) commercially supplied with epitaxial electrolyte layers (1.5 {um (Y2O3)0.15(ZrO2)0.85 (YSZ) + 50 nm CeO2). We create epitaxial mesoporous cathodes of (La0.60Sr0.40)0.95Co0.20Fe0.80O3 (LSCF) on the substrate by growing LSCF/MgO vertically aligned nanocomposite films by pulsed laser deposition, followed by selectively etching out the MgO. To enable valid comparison with the literature, the cathodes are also grown on single-crystal substrates, confirming state-of-the-art performance with an area specific resistance of 100ohmegacm2 at 500dC and activation energy down to 0.97 eV. The work marks an important step toward the commercialization of high-performance micro-solid oxide fuel cells for portable power applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا