No Arabic abstract
Grid-based hydrodynamics simulations of circumstellar disks are often performed in the curvilinear coordinate system, in which the center of the computational domain coincides with the motionless star. However, the center of mass may be shifted from the star due to the presence of any non-axisymmetric mass distribution. As a result, the system exerts a gravity force on the star, causing the star to move in response, which can affect the evolution of the circumstellar disk. We aim at studying the effects of stellar motion on the evolution of protostellar and protoplanetary disks. In protostellar disks, a non-axisymmetric distribution of matter in the form of spiral arms or massive clumps can form due to gravitational instability. Protoplanetary disks can also feature non-axisymmetric structures caused by a high-mass planet or a large-scale vortex. We use 2D grid-based hydrodynamic simulations to explore the effect of stellar motion. We adopt a non-inertial polar coordinate system centered on the star, in which the stellar motion is taken into account by calculating the indirect potential caused by the non-axisymmetric disk, a high-mass planet, or a large-scale vortex. We found that the stellar motion has a moderate effect on the evolution history in protostellar disks, reducing somewhat the disk size and mass, while having a profound effect on the collapsing envelope, changing its inner shape from an initially axisymmetric to a non-axisymmetric configuration. Protoplanetary disk simulations show that the stellar motion slightly reduces the width of the gap opened by a high-mass planet, decreases the planet migration rate, and strengthens the large-scale vortices formed at the viscosity transition. We conclude that the inclusion of the indirect potential is recommended in grid-based hydrodynamics simulations of circumstellar disks which use the curvilinear coordinate system.
We present results of high-resolution imaging toward HL Tau by the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have obtained 1.3 and 2.7 mm dust continua with an angular resolution down to 0.13 arc second. Through model fitting to the two wavelength data simultaneously in Bayesian inference using a flared viscous accretion disk model, we estimate the physical properties of HL Tau, such as density distribution, dust opacity spectral index, disk mass, disk size, inclination angle, position angle, and disk thickness. HL Tau has a circumstellar disk mass of 0.13 solar mass, a characteristic radius of 79 AU, an inclination of 40 degree, and a position angle of 136 degree. Although a thin disk model is preferred by our two wavelength data, a thick disk model is needed to explain the high mid- and far-infrared emission of the HL Tau spectral energy distribution. This could imply large dust grains settled down on the mid plane with fine dust grains mixed with gas. The HL Tau disk is likely gravitationally unstable and can be fragmented between 50 and 100 AU of radius. However, we did not detect dust thermal continuum supporting the protoplanet candidate claimed by a previous study using observations of the Very Large Array at 1.3 cm.
The debris disk surrounding $beta$ Pictoris has a gas composition rich in carbon and oxygen, relative to solar abundances. Two possible scenarios have been proposed to explain this enrichment. The preferential production scenario suggests that the gas produced may be naturally rich in C and O, while the alternative preferential depletion scenario states that the enrichment has evolved to the current state from a gas with solar-like abundances. In the latter case, the radiation pressure from the star expels the gas outwards, leaving behind species less sensitive to stellar radiation such as C and O. Nitrogen is also not sensitive to radiation pressure due to its low oscillator strength, which would make it also overabundant under the preferential depletion scenario. As such, the abundance of N in the disk may provide clues to why C and O are overabundant. We aim to measure the N column density in the direction of $beta$ Pic, and use this information to disentangle these different scenarios explaining the C and O overabundance. Using far-UV spectroscopic data collected by the HSTs Cosmic Origins Spectrograph (COS) instrument, we analyse the spectrum and characterise the NI triplet by modelling the absorption lines. We measure the N column density in the direction of $beta$ Pic for the first time, and find it to be $log(N_{mathrm{NI}}/1,mathrm{cm}^2) = 14.9pm0.7$. The N gas is found to be consistent with solar abundances and Halley dust. The solar N abundance supports the preferential production hypothesis, in which the composition of gas in $beta$,Pic is the result of photodesorption from icy grains rich in C and O or collisional vaporisation of C and O rich dust in the disk. It does not support the hypothesis that C and O are overabundant due to the insensitivity of C and O to radiation pressure thereby leaving them to accumulate in the disk.
We report our analyses of the multi-epoch (2015-2017) ALMA archival data of the Class II binary system XZ Tau at Bands 3, 4 and 6. The millimeter dust continuum images show compact, unresolved (r <~ 15 au) circumstellar disks (CSDs) around the individual binary stars; XZ Tau A and B, with a projected separation of ~ 39 au. The 12CO (2-1) emission associated with those CSDs traces the Keplerian rotations, whose rotational axes are misaligned with each other (P.A. ~ -5 deg for XZ Tau A and ~ 130 deg for XZ Tau B). The similar systemic velocities of the two CSDs (VLSR ~ 6.0 km s-1) suggest that the orbital plane of the binary stars is close to the plane of the sky. From the multi-epoch ALMA data, we have also identified the relative orbital motion of the binary. Along with the previous NIR data, we found that the elliptical orbit (e = 0.742+0.025-0.034, a = 0.172+0.002-0.003, and {omega} = -54.2+2.0-4.7 deg) is preferable to the circular orbit. Our results suggest that the two CSDs and the orbital plane of the XZ Tau system are all misaligned with each other, and possible mechanisms to produce such a configuration are discussed. Our analyses of the multi-epoch ALMA archival data demonstrate the feasibility of time-domain science with ALMA.
The circumstellar environments of classical T Tauri stars are challenging to directly image because of their high star-to-disk contrast ratio. One method to overcome this is by using imaging polarimetry where scattered and consequently polarised starlight from the stars circumstellar disk can be separated from the unpolarised light of the central star. We present images of the circumstellar environment of SU Aur, a classical T Tauri star at the transition of T Tauri to Herbig stars. The images directly show that the disk extends out to ~500 au with an inclination angle of $sim$ 50$^circ$. Using interpretive models, we derived very small grains in the surface layers of its disk, with a very steep size- and surface-density distribution. Additionally, we resolved a large and extended nebulosity in our images that is most likely a remnant of the prenatal molecular cloud. The position angle of the disk, determined directly from our images, rules out a polar outflow or jet as the cause of this large-scale nebulosity.
The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. We investigate the structure of the circumstellar environment of the UX~Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 +- 0.06 AU in the H band and 0.18 +- 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disks. The inner disk has a temperature of 1257^{+133}_{-53} K at the inner rim and extends from 0.19 +- 0.01 AU to 0.23 +- 0.02 AU. The outer disk begins at 1.35^{+0.19}_{-0.20} AU and has an inner temperature of 334^{+35}_{-17} K. The derived inclination of 48.6^{+2.9}_{-3.6}deg approximately agrees with the inclination derived with the geometric model (49 +- 5deg in the K band and 50 +- 11deg in the H band). The position angle of the fitted geometric and temperature-gradient models are 163 +- 9deg (K band; 179 +- 17deg in the H band) and 169.3^{+4.2}_{-6.7}deg, respectively. The narrow width of the inner ring-shaped model disk and the disk gap might be an indication for a puffed-up inner rim shadowing outer parts of the disk. The intermediate inclination of ~50deg is consistent with models of UX Ori objects where dust clouds in the inclined disk obscure the central star.