Do you want to publish a course? Click here

Optimized evolution of networks for principal eigenvector localization

67   0   0.0 ( 0 )
 Added by Priodyuti Pradhan
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Network science is increasingly being developed to get new insights about behavior and properties of complex systems represented in terms of nodes and interactions. One useful approach is investigating localization properties of eigenvectors having diverse applications including disease-spreading phenomena in underlying networks. In this work, we evolve an initial random network with an edge rewiring optimization technique considering the inverse participation ratio as a fitness function. The evolution process yields a network having localized principal eigenvector. We analyze various properties of the optimized networks and those obtained at the intermediate stage. Our investigations reveal the existence of few special structural features of such optimized networks including the presence of a set of edges which are necessary for the localization, and rewiring only one of them leads to a complete delocalization of the principal eigenvector. Our investigation reveals that PEV localization is not a consequence of a single network property, and preferably requires co-existence of various distinct structural as well as spectral features.



rate research

Read More

Complex networks or graphs provide a powerful framework to understand importance of individuals and their interactions in real-world complex systems. Several graph theoretical measures have been introduced to access importance of the individual in systems represented by networks. Particularly, eigenvector centrality (EC) measure has been very popular due to its ability in measuring importance of the nodes based on not only number of interactions they acquire but also particular structural positions they have in the networks. Furthermore, the presence of certain structural features, such as the existence of high degree nodes in a network is recognized to induce localization transition of the principal eigenvector (PEV) of the networks adjacency matrix. Localization of PEV has been shown to cause difficulties in assigning centrality weights to the nodes based on the EC. We revisit PEV localization and its relation with failure of EC problem, and by using simple model networks demonstrate that in addition to the localization of the PEV, the delocalization of PEV may also create difficulties for using EC as a measure to rank the nodes. Our investigation while providing fundamental insight to the relation between PEV localization and centrality of nodes in networks, suggests that for the networks having delocalized PEVs, it is better to use degree centrality measure to rank the nodes.
The spectral properties of the adjacency matrix, in particular its largest eigenvalue and the associated principal eigenvector, dominate many structural and dynamical properties of complex networks. Here we focus on the localization properties of the principal eigenvector in real networks. We show that in most cases it is either localized on the star defined by the node with largest degree (hub) and its nearest neighbors, or on the densely connected subgraph defined by the maximum $K$-core in a $K$-core decomposition. The localization of the principal eigenvector is often strongly correlated with the value of the largest eigenvalue, which is given by the local eigenvalue of the corresponding localization subgraph, but different scenarios sometimes occur. We additionally show that simple targeted immunization strategies for epidemic spreading are extremely sensitive to the actual localization set.
318 - Yueheng Zhang 2021
The principal ratio of a connected graph $G$, $gamma(G)$, is the ratio between the largest and smallest coordinates of the principal eigenvector of the adjacency matrix of $G$. Over all connected graphs on $n$ vertices, $gamma(G)$ ranges from $1$ to $n^{cn}$. Moreover, $gamma(G)=1$ if and only if $G$ is regular. This indicates that $gamma(G)$ can be viewed as an irregularity measure of $G$, as first suggested by Tait and Tobin (El. J. Lin. Alg. 2018). We are interested in how stable this measure is. In particular, we ask how $gamma$ changes when there is a small modification to a regular graph $G$. We show that this ratio is polynomially bounded if we remove an edge belonging to a cycle of bounded length in $G$, while the ratio can jump from $1$ to exponential if we join a pair of vertices at distance $2$. We study the connection between the spectral gap of a regular graph and the stability of its principal ratio. A naive bound shows that given a constant multiplicative spectral gap and bounded degree, the ratio remains polynomially bounded if we add or delete an edge. Using results from matrix perturbation theory, we show that given an additive spectral gap greater than $(2+epsilon)sqrt{n}$, the ratio stays bounded after adding or deleting an edge.
In this paper, we give some bounds for principal eigenvector and spectral radius of connected uniform hypergraphs in terms of vertex degrees, the diameter, and the number of vertices and edges.
We study localization properties of principal eigenvector (PEV) of multilayer networks. Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one-layer is enough to attain a multilayer network having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized multilayer network can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEV is accompanied by a pair of almost degenerate eigenvalues. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data show that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. The study is relevant to applications that require understanding propagation of perturbation in multilayer networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا