One-way deficit and quantum phase transitions in $XY$ model and extended Ising model


Abstract in English

Originating in questions regarding work extraction from quantum systems coupled to a heat bath, quantum deficit, a kind of quantum correlations besides entanglement and quantum discord, links quantum thermodynamics with quantum correlations. In this paper, we evaluate the one-way deficit of two adjacent spins in the bulk for the $XY$ model and its extend model: the extended Ising model. We find that the one-way deficit susceptibility is able to characterize the quantum phase transitions in the $XY$ model and even the topological phase transitions in the extend Ising model. This study may enlighten extensive studies of quantum phase transitions from the perspective of quantum information processing and quantum computation, including finite-temperature phase transitions, topological phase transitions and dynamical phase transitions of a variety of quantum many-body systems.

Download