No Arabic abstract
We present an optically-selected cluster catalog from the Hyper Suprime-Cam (HSC) Subaru Strategic Program. The HSC images are sufficiently deep to detect cluster member galaxies down to $M_*sim 10^{10.2}M_odot$ even at $zsim 1$, allowing a reliable cluster detection at such high redshifts. We apply the CAMIRA algorithm to the HSC Wide S16A dataset covering $sim 232$ deg$^2$ to construct a catalog of 1921 clusters at redshift $0.1<z<1.1$ and richness $hat{N}_{rm mem}>15$ that roughly corresponds to $M_{rm 200m}gtrsim 10^{14}h^{-1}M_odot$. We confirm good cluster photometric redshift performance, with the bias and scatter in $Delta z/(1+z)$ being better than 0.005 and 0.01 over most of the redshift range, respectively. We compare our cluster catalog with large X-ray cluster catalogs from XXL and XMM-LSS surveys and find good correlation between richness and X-ray properties. We also study the miscentering effect from the distribution of offsets between optical and X-ray cluster centers. We confirm the high ($>0.9$) completeness and purity for high mass clusters by analyzing mock galaxy catalogs.
We present wide-field (167 deg$^2$) weak lensing mass maps from the Hyper Supreme-Cam Subaru Strategic Program (HSC-SSP). We compare these weak lensing based dark matter maps with maps of the distribution of the stellar mass associated with luminous red galaxies. We find a strong correlation between these two maps with a correlation coefficient of $rho=0.54pm0.03$ (for a smoothing size of $8$). This correlation is detected even with a smaller smoothing scale of $2$ ($rho=0.34pm 0.01$). This detection is made uniquely possible because of the high source density of the HSC-SSP weak lensing survey ($bar{n}sim 25$ arcmin$^{-2}$). We also present a variety of tests to demonstrate that our maps are not significantly affected by systematic effects. By using the photometric redshift information associated with source galaxies, we reconstruct a three-dimensional mass map. This three-dimensional mass map is also found to correlate with the three-dimensional galaxy mass map. Cross-correlation tests presented in this paper demonstrate that the HSC-SSP weak lensing mass maps are ready for further science analyses.
We use the Hyper Suprime-Cam Subaru Strategic Program S19A shape catalog to construct weak lensing shear-selected cluster samples. From aperture mass maps covering $sim 510$~deg$^2$ created using a truncated Gaussian filter, we construct a catalog of 187 shear-selected clusters that correspond to mass map peaks with the signal-to-noise ratio larger than 4.7. Most of the shear-selected clusters have counterparts in optically-selected clusters, from which we estimate the purity of the catalog to be higher than 95%. The sample can be expanded to 418 shear-selected clusters with the same signal-to-noise ratio cut by optimizing the shape of the filter function and by combining weak lensing mass maps created with several different background galaxy selections. We argue that dilution and obscuration effects of cluster member galaxies can be mitigated by using background source galaxy samples and adopting the filter function with its inner boundary larger than about $2$. The large samples of shear-selected clusters that are selected without relying on any baryonic tracer are useful for detailed studies of cluster astrophysics and cosmology.
We present a joint X-ray, optical and weak-lensing analysis for X-ray luminous galaxy clusters selected from the MCXC (Meta-Catalog of X-Ray Detected Clusters of Galaxies) cluster catalog in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) survey field with S16A data, As a pilot study of our planned series papers, we measure hydrostatic equilibrium (H.E.) masses using XMM-Newton data for four clusters in the current coverage area out of a sample of 22 MCXC clusters. We additionally analyze a non-MCXC cluster associated with one MCXC cluster. We show that H.E. masses for the MCXC clusters are correlated with cluster richness from the CAMIRA catalog (Oguri et al. 2017), while that for the non-MCXC cluster deviates from the scaling relation. The mass normalization of the relationship between the cluster richness and H.E. mass is compatible with one inferred by matching CAMIRA cluster abundance with a theoretical halo mass function. The mean gas mass fraction based on H.E. masses for the MCXC clusters is $langle f_{rm gas} rangle = 0.125pm0.012$ at spherical overdensity $Delta=500$, which is $sim80-90$ percent of the cosmic mean baryon fraction, $Omega_b/Omega_m$, measured by cosmic microwave background experiments. We find that the mean baryon fraction estimated from X-ray and HSC-SSP optical data is comparable to $Omega_b/Omega_m$. A weak-lensing shear catalog of background galaxies, combined with photometric redshifts, is currently available only for three clusters in our sample. Hydrostatic equilibrium masses roughly agree with weak-lensing masses, albeit with large uncertainty. This study demonstrates that further multiwavelength study for a large sample of clusters using X-ray, HSC-SSP optical and weak lensing data will enable us to understand cluster physics and utilize cluster-based cosmology.
This paper presents the second data release of the Hyper Suprime-Cam Subaru Strategic Program, a wide-field optical imaging survey on the 8.2 meter Subaru Telescope. The release includes data from 174 nights of observation through January 2018. The Wide layer data cover about 300 deg^2 in all five broadband filters (grizy) to the nominal survey exposure (10min in gr and 20min in izy). Partially observed areas are also included in the release; about 1100 deg^2 is observed in at least one filter and one exposure. The median seeing in the i-band is 0.6 arcsec, demonstrating the superb image quality of the survey. The Deep (26 deg^2) and UltraDeep (4 deg^2) data are jointly processed and the UltraDeep-COSMOS field reaches an unprecedented depth of i~28 at 5 sigma for point sources. In addition to the broad-bands, narrow-band data are also available in the Deep and UltraDeep fields. This release includes a major update to the processing pipeline, including improved sky subtraction, PSF modeling, object detection, and artifact rejection. The overall data quality has been improved, but this release is not without problems; there is a persistent deblender problem as well as new issues with masks around bright stars. The user is encouraged to review the issue list before utilizing the data for scientific explorations. All the image products as well as catalog products are available for download. The catalogs are also loaded to a database, which provides an easy interface for users to retrieve data for objects of interest. In addition to these main data products, detailed galaxy shape measurements withheld from the Public Data Release 1 (PDR1) are now available to the community. The shape catalog is drawn from the S16A internal release, which has a larger area than PDR1 (160 deg^2). All products are available at the data release site, https://hsc-release.mtk.nao.ac.jp/.
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 years of observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and ~27.0 mag, respectively (5sigma for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF photometry (rms) both internally and externally (against Pan-STARRS1), and ~10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp/.