Do you want to publish a course? Click here

A New Compton-thick AGN in our Cosmic Backyard: Unveiling the Buried Nucleus in NGC 1448 with NuSTAR

56   0   0.0 ( 0 )
 Added by Adlyka Annuar
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 1448 is one of the nearest luminous galaxies ($L_{8-1000mu m} >$ 10$^{9} L_{odot}$) to ours ($z$ $=$ 0.00390), and yet the active galactic nucleus (AGN) it hosts was only recently discovered, in 2009. In this paper, we present an analysis of the nuclear source across three wavebands: mid-infrared (MIR) continuum, optical, and X-rays. We observed the source with the Nuclear Spectroscopic Telescope Array (NuSTAR), and combined this data with archival Chandra data to perform broadband X-ray spectral fitting ($approx$0.5-40 keV) of the AGN for the first time. Our X-ray spectral analysis reveals that the AGN is buried under a Compton-thick (CT) column of obscuring gas along our line-of-sight, with a column density of $N_{rm H}$(los) $gtrsim$ 2.5 $times$ 10$^{24}$ cm$^{-2}$. The best-fitting torus models measured an intrinsic 2-10 keV luminosity of $L_{2-10rm{,int}}$ $=$ (3.5-7.6) $times$ 10$^{40}$ erg s$^{-1}$, making NGC 1448 one of the lowest luminosity CTAGNs known. In addition to the NuSTAR observation, we also performed optical spectroscopy for the nucleus in this edge-on galaxy using the European Southern Observatory New Technology Telescope. We re-classify the optical nuclear spectrum as a Seyfert on the basis of the Baldwin-Philips-Terlevich diagnostic diagrams, thus identifying the AGN at optical wavelengths for the first time. We also present high spatial resolution MIR observations of NGC 1448 with Gemini/T-ReCS, in which a compact nucleus is clearly detected. The absorption-corrected 2-10 keV luminosity measured from our X-ray spectral analysis agrees with that predicted from the optical [OIII]$lambda$5007AA emission line and the MIR 12$mu$m continuum, further supporting the CT nature of the AGN.



rate research

Read More

We present the analysis of Chandra and NuSTAR spectra of NGC 4968, a local (D$sim$44 Mpc) 12$mu$m-selected Seyfert 2 galaxy, enshrouded within Compton-thick layers of obscuring gas. We find no evidence of variability between the Chandra and NuSTAR observations (separated by 2 years), and between the two NuSTAR observations (separated by 10 months). Using self-consistent X-ray models, we rule out the scenario where the obscuring medium is nearly spherical and uniform, contradicting the results implied by the $<$10 keV Chandra spectrum. The line-of-sight column density, from intervening matter between the source and observer that intercepts the intrinsic AGN X-ray emission, is well within the Compton-thick regime, with a minimum column density of $2times10^{24}$ cm$^{-2}$. The average global column density is high ($> 3times10^{23}$ cm$^{-2}$), with both Compton-thick and Compton-thin solutions permitted depending on the X-ray spectral model. The spectral models provide a range of intrinsic AGN continuum parameters and implied 2-10 keV luminosities ($L_{rm 2-10keV,intrinsic}$), where the higher end of $L_{rm 2-10keV,intrinsic}$ is consistent with expectations from the 12$mu$m luminosity ($L_{rm 2-10keV,intrinisc} sim 7times10^{42}$ erg s$^{-1}$). Compared with Compton-thick AGN previously observed by {it NuSTAR}, NGC 4968 is among the most intrinsically X-ray luminous. However, despite its close proximity and relatively high intrinsic X-ray luminosity, it is undetected by the 105 month Swift-BAT survey, underscoring the importance of multi-wavelength selection for obtaining the most complete census of the most hidden black holes.
181 - P. Gandhi 2014
We present X-ray observations of the active galactic nucleus (AGN) in NGC 4785. The source is a local Seyfert 2 which has not been studied so far in much detail. It was recently detected with high significance in the 15-60 keV band in the 66 month Swift/BAT all sky survey, but there have been no prior pointed X-ray observations of this object. With Suzaku, we clearly detect the source below 10 keV, and find it to have a flat continuum and prominent neutral iron fluorescence line with equivalent width >~1 keV. Fitting the broadband spectra with physical reflection models shows the source to be a bona fide Compton thick AGN with Nh of at least 2x10^{24} cm^{-2} and absorption-corrected 2-10 keV X-ray power L(2-10) ~ few times 10^{42} erg s^{-1}. Realistic uncertainties on L(2-10) computed from the joint confidence interval on the intrinsic power law continuum photon index and normalization are at least a factor of 10. The local bona fide Compton thick AGN population is highly heterogeneous in terms of WISE mid-infrared source colours, and the nucleus of NGC 4785 appears especially sub-dominant in the mid-infrared when comparing to other Compton thick AGN. Such sources would not be easily found using mid-infrared selection alone. The extent of host galaxy extinction to the nucleus is not clear, though NGC 4785 shows a complex core with a double bar and inner disk, adding to the list of known Compton thick AGN in barred host galaxies.
We present two NuSTAR observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy ($sim$0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line-of-sight. However, the lack of high-quality $gtrsim$ 10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, had left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of $N_{rm{H}}$ $gtrsim$ 5 $times$ 10$^{24}$ cm$^{-2}$. The range of 2-10 keV absorption-corrected luminosity inferred from the best fitting models is $L_{2-10,rm{int}} =$ (0.8-1.7) $times$ 10$^{42}$ erg s$^{-1}$, consistent with that predicted from multiwavelength intrinsic luminosity indicators. We also study the NuSTAR data for NGC 5643 X-1, and show that it exhibits evidence for a spectral cut-off at energy, $E$ $sim$ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003-2014, our results further strengthen the ULX classification of NGC 5643 X-1.
We present X-ray spectral analyses for three Seyfert 2 active galactic nuclei, NGC 424, NGC 1320, and IC 2560, observed by NuSTAR in the 3-79 keV band. The high quality hard X-ray spectra allow detailed modeling of the Compton reflection component for the first time in these sources. Using quasi-simultaneous NuSTAR and Swift/XRT data, as well as archival XMM-Newton data, we find that all three nuclei are obscured by Compton-thick material with column densities in excess of ~5 x $10^{24}$ cm$^{-2}$, and that their X-ray spectra above 3 keV are dominated by reflection of the intrinsic continuum on Compton-thick material. Due to the very high obscuration, absorbed intrinsic continuum components are not formally required by the data in any of the sources. We constrain the intrinsic photon indices and the column density of the reflecting medium through the shape of the reflection spectra. Using archival multi-wavelength data we recover the intrinsic X-ray luminosities consistent with the broadband spectral energy distributions. Our results are consistent with the reflecting medium being an edge-on clumpy torus with a relatively large global covering factor and overall reflection efficiency of the order of 1%. Given the unambiguous confirmation of the Compton-thick nature of the sources, we investigate whether similar sources are likely to be missed by commonly used selection criteria for Compton-thick AGN, and explore the possibility of finding their high-redshift counterparts.
We analyse high-quality NuSTAR observations of the local (z = 0.011) Seyfert 2 active galactic nucleus (AGN) IC 3639, in conjunction with archival Suzaku and Chandra data. This provides the first broadband X-ray spectral analysis of the source, spanning nearly two decades in energy (0.5-30 keV). Previous X-ray observations of the source below 10 keV indicated strong reflection/obscuration on the basis of a pronounced iron fluorescence line at 6.4 keV. The hard X-ray energy coverage of NuSTAR, together with self-consistent toroidal reprocessing models, enables direct broadband constraints on the obscuring column density of the source. We find the source to be heavily Compton-thick (CTK) with an obscuring column in excess of $3.6times10^{24}$ cm$^{-2}$, unconstrained at the upper end. We further find an intrinsic 2-10 keV luminosity of $textrm{log}_{10}(L_{textrm{2-10 keV}} textrm{[erg s}^{-1}]) = 43.4^{+0.6}_{-1.1}$ to 90% confidence, almost 400 times the observed flux, and consistent with various multi-wavelength diagnostics. Such a high intrinsic to observed flux ratio in addition to an Fe-K$alpha$ fluorescence line equivalent width exceeding 2 keV is extreme amongst known bona fide CTK AGN, which we suggest are both due to the high level of obscuration present around IC 3639. Our study demonstrates that broadband spectroscopic modelling with NuSTAR enables large corrections for obscuration to be carried out robustly, and emphasises the need for improved modelling of AGN tori showing intense iron fluorescence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا