Shubnikov-de Haas oscillations in p and n-type topological insulator (Bi$_{x}$Sb$_{1-x}$)$_{2}$Te$_{3}$


Abstract in English

We show Shubnikov-de Haas oscillations in topological insulator (Bi$_{x}$Sb$_{1-x}$)$_{2}$Te$_{3}$ films whose carrier type is p-type (x = 0.29, 0.34) and n-type (x = 0.42). The physical properties such as the Berry phase, mobility, and the scattering time are significantly changed by tuning the Fermi-level position with the concentration x. The Landau-level fan diagram in the sample with x = 0.42 showed the $pi$ Berry phase and its mobility was as high as 17,000 cm$^{2}$/V/s, whereas the others had the 2$pi$ Berry phase and much lower mobility. This suggests that because the bulk band of the sample with x = 0.42 does not cross the Fermi level, it becomes bulk insulating, resulting in the topological surface-state dominating transport. Thus, we can switch sample properties from degenerate to bulk insulating by tuning the concentration x, which is consistent with results of angle-resolved photoemission spectroscopy.

Download