Do you want to publish a course? Click here

Heptagons from the Steinmann Cluster Bootstrap

56   0   0.0 ( 0 )
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We reformulate the heptagon cluster bootstrap to take advantage of the Steinmann relations, which require certain double discontinuities of any amplitude to vanish. These constraints vastly reduce the number of functions needed to bootstrap seven-point amplitudes in planar $mathcal{N} = 4$ supersymmetric Yang-Mills theory, making higher-loop contributions to these amplitudes more computationally accessible. In particular, dual superconformal symmetry and well-defined collinear limits suffice to determine uniquely the symbols of the three-loop NMHV and four-loop MHV seven-point amplitudes. We also show that at three loops, relaxing the dual superconformal ($bar{Q}$) relations and imposing dihedral symmetry (and for NMHV the absence of spurious poles) leaves only a single ambiguity in the heptagon amplitudes. These results point to a strong tension between the collinear properties of the amplitudes and the Steinmann relations.



rate research

Read More

We review the bootstrap method for constructing six- and seven-particle amplitudes in planar $mathcal{N}=4$ super Yang-Mills theory, by exploiting their analytic structure. We focus on two recently discovered properties which greatly simplify this construction at symbol and function level, respectively: the extended Steinmann relations, or equivalently cluster adjacency, and the coaction principle. We then demonstrate their power in determining the six-particle amplitude through six and seven loops in the NMHV and MHV sectors respectively, as well as the symbol of the NMHV seven-particle amplitude to four loops.
We extend the cosmological bootstrap to correlators involving massless particles with spin. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future boundary of the spacetime, which are reflected in a set of Ward identities that the boundary correlators must satisfy. We solve these Ward identities by acting with weight-shifting operators on scalar seed solutions. Using this weight-shifting approach, we derive three- and four-point correlators of massless spin-1 and spin-2 fields with conformally coupled scalars. Four-point functions arising from tree-level exchange are singular in particular kinematic configurations, and the coefficients of these singularities satisfy certain factorization properties. We show that in many cases these factorization limits fix the structure of the correlators uniquely, without having to solve the conformal Ward identities. The additional constraint of locality for massless spinning particles manifests itself as current conservation on the boundary. We find that the four-point functions only satisfy current conservation if the s, t, and u-channels are related to each other, leading to nontrivial constraints on the couplings between the conserved currents and other operators in the theory. For spin-1 currents this implies charge conservation, while for spin-2 currents we recover the equivalence principle from a purely boundary perspective. For multiple spin-1 fields, we recover the structure of Yang-Mills theory. Finally, we apply our methods to slow-roll inflation and derive a few phenomenologically relevant scalar-tensor three-point functions.
We apply the analytic conformal bootstrap method to study weakly coupled conformal gauge theories in four dimensions. We employ twist conformal blocks to find the most general form of the one-loop four-point correlation function of identical scalar operators, without any reference to Feynman calculations. The method relies only on symmetries of the model. In particular, it does not require introducing any regularisation and it is free from the redundancies usually associated with the Feynman approach. By supplementing the general solution with known data for a small number of operators, we recover explicit forms of one-loop correlation functions of four Konishi operators as well as of four half-BPS operators $mathcal{O}_{20}$ in $mathcal{N}=4$ super Yang-Mills.
Scattering amplitudes at weak coupling are highly constrained by Lorentz invariance, locality and unitarity, and depend on model details only through coupling constants and particle content. In this paper, we develop an understanding of inflationary correlators which parallels that of flat-space scattering amplitudes. Specifically, we study slow-roll inflation with weak couplings to extra massive particles, for which all correlators are controlled by an approximate conformal symmetry on the boundary of the spacetime. After classifying all possible contact terms in de Sitter space, we derive an analytic expression for the four-point function of conformally coupled scalars mediated by the tree-level exchange of massive scalars. Conformal symmetry implies that the correlator satisfies a pair of differential equations with respect to spatial momenta, encoding bulk time evolution in purely boundary terms. The absence of unphysical singularities completely fixes this correlator. A spin-raising operator relates it to the correlators associated with the exchange of particles with spin, while weight-shifting operators map it to the four-point function of massless scalars. We explain how these de Sitter four-point functions can be perturbed to obtain inflationary three-point functions. We reproduce many classic results in the literature and provide a complete classification of all inflationary three- and four-point functions arising from weakly broken conformal symmetry. The inflationary bispectrum associated with the exchange of particles with arbitrary spin is completely characterized by the soft limit of the simplest scalar-exchange four-point function of conformally coupled scalars and a series of contact terms. Finally, we demonstrate that the inflationary correlators contain flat-space scattering amplitudes via a suitable analytic continuation of the external momenta.
Modular invariance imposes rigid constrains on the partition functions of two-dimensional conformal field theories. Many fundamental results follow strictly from modular invariance, giving rise to the numerical modular bootstrap program. Here we report a way to assign to a particular family of quantum error correcting codes a family of code CFTs CFTs, which forms a subset of the space of Narain CFTs. This correspondence reduces modular invariance of the 2d CFT partition function to a few simple algebraic relations obeyed by a multivariate polynomial characterizing the corresponding code. Using this relation we construct many explicit examples of physically distinct isospectral theories, as well as many examples of nonholomorphic functions, which satisfy all basic properties of the 2d CFT partition function, yet are not associated with any known CFT.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا