No Arabic abstract
We report the observations of an electron vortex magnetic hole corresponding to a new type of coherent structures in the magnetosheath turbulent plasma using the Magnetospheric Multiscale (MMS) mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the center of the magnetic hole and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 r{ho}i (~ 30 r{ho}e) in the circular cross-section perpendicular to its axis, where r{ho}i and r{ho}e are respectively the proton and electron gyroradius. There are no clear enhancement seen in high energy electron fluxes, but an enhancement in the perpendicular electron fluxes at ~ 90{deg} pitch angles inside the magnetic hole is seen, implying that the electron are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section (in the M-N plane). These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.
Using observational data from the emph{Magnetospheric Multiscale} (MMS) Mission in the Earths magnetosheath, we estimate the energy cascade rate using different techniques within the framework of incompressible magnetohydrodynamic (MHD) turbulence. At the energy containing scale, the energy budget is controlled by the von Karman decay law. Inertial range cascade is estimated by fitting a linear scaling to the mixed third-order structure function. Finally, we use a multi-spacecraft technique to estimate the Kolmogorov-Yaglom-like cascade rate in the kinetic range, well below the ion inertial length scale. We find that the inertial range cascade rate is almost equal to the one predicted by the von Karman law at the energy containing scale, while the cascade rate evaluated at the kinetic scale is somewhat lower, as anticipated in theory~citep{Yang2017PoP}. Further, in agreement with a recent study~citep{Hadid2018PRL}, we find that the incompressive cascade rate in the Earths magnetosheath is about $1000$ times larger than the cascade rate in the pristine solar wind.
In the context of space and astrophysical plasma turbulence and particle heating, several vocabularies emerge for estimating turbulent energy dissipation rate, including Kolmogorov-Yaglom third-order law and, in its various forms, $boldsymbol{j}cdotboldsymbol{E}$ (work done by the electromagnetic field on particles), and $-left( boldsymbol{P} cdot abla right) cdot boldsymbol{u}$ (pressure-strain interaction), to name a couple. It is now understood that these energy transfer channels, to some extent, are correlated with coherent structures. In particular, we find that different energy dissipation proxies, although not point-wise correlated, are concentrated in proximity to each other, for which they decorrelate in a few $d_i$(s). However, the energy dissipation proxies dominate at different scales. For example, there is an inertial range over which the third-order law is meaningful. Contributions from scale bands stemming from scale-dependent spatial filtering show that, the energy exchange through $boldsymbol{j}cdotboldsymbol{E}$ mainly results from large scales, while the energy conversion from fluid flow to internal through $-left( boldsymbol{P} cdot abla right) cdot boldsymbol{u}$ dominates at small scales.
Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The MMS mission provides the first serious opportunity to check if small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures where ions are demagnetized. Within the selected structure we see signatures of ion demagnetization, electron jets, electron heating and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.
Alfven vortex is a multi-scale nonlinear structure which contributes to intermittency of turbulence. Despite previous explorations mostly on the spatial properties of the Alfven vortex (i.e., scale, orientation, and motion), the plasma characteristics within the Alfven vortex are unknown. Moreover, the connection between the plasma energization and the Alfven vortex still remains unclear. Based on high resolution in-situ measurement from the Magnetospheric Multiscale (MMS) mission, we report for the first time, distinctive plasma features within an Alfven vortex. This Alfven vortex is identified to be two-dimensional ($k_{bot} gg k_{|}$) quasi-monopole with a radius of ~10 proton gyroscales. Its magnetic fluctuations $delta B_{bot}$ are anti correlated with velocity fluctuations $delta V_{bot}$, thus the parallel current density $j_{|}$ and flow vorticity $omega_{|}$ are anti-aligned. In different part of the vortex (i.e., edge, middle, center), the ion and electron temperatures are found to be quite different and they behave in the reverse trend: the ion temperature variations are correlated with $j_{|}$, while the electron temperature variations are correlated with $omega_{|}$. Furthermore, the temperature anisotropies, together with the non-Maxwellian kinetic effects, exhibit strong enhancement at peaks of $|omega_{|}| (|j_{|}|)$ within the vortex. Comparison between observations and numerical/theoretical results are made. In addition, the energy-conversion channels and the compressibility associated with the Alfven vortex are discussed. These results may help to understand the link between coherent vortex structures and the kinetic processes, which determines how turbulence energy dissipate in the weakly-collisional space plasmas.
Magnetic reconnection (MR) and the associated concurrently occurring waves have been extensively studied at large-scale plasma boundaries, in quasi-symmetric and asymmetric configurations in the terrestrial magnetotail and at the magnetopause. Recent high-resolution observations by MMS (Magnetospheric Multiscale) spacecraft indicate that MR can occur also in the magnetosheath where the conditions are highly turbulent when the upstream shock geometry is quasi-parallel. The strong turbulent motions make the boundary conditions for evolving MR complicated. In this paper it is demonstrated that the wave observations in localized regions of MR can serve as an additional diagnostic tool reinforcing our capacity for identifying MR events in turbulent plasmas. It is shown that in a close resemblance with MR at large-scale boundaries, turbulent reconnection associated whistler waves occur at separatrix/outflow regions and at the outer boundary of the electron diffusion region, while lower hybrid drift waves are associated with density gradients during the crossing of the current sheet. The lower hybrid drift instability can make the density inhomogeneities rippled. The identification of MR associated waves in the magnetosheath represents also an important milestone for developing a better understanding of energy redistribution and dissipation in turbulent plasmas.