Do you want to publish a course? Click here

Comparison theorem for nearby cycles of a morphism without slopes

137   0   0.0 ( 0 )
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The goal of this article is to prove the comparison theorem between algebraic and topological nearby cycles of a morphism without slopes. We prove in particular that for a family of holomorphic functions without slopes, if we iterate comparison isomorphisms for nearby cycles of each function the result is independent of the order of iteration.



rate research

Read More

We introduce a novel approach to Bertini irreducibility theorems over an arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of Benoist, we prove that for a morphism $phi colon X to mathbb{P}^n$ such that $X$ is geometrically irreducible and the nonempty fibers of $phi$ all have the same dimension, the locus of hyperplanes $H$ such that $phi^{-1} H$ is not geometrically irreducible has dimension at most $operatorname{codim} phi(X)+1$. We give an application to monodromy groups above hyperplane sections.
We prove a monomialization theorem for mappings in general classes of infinitely differentiable functions that are called quasianalytic. Examples include Denjoy-Carleman classes (of interest in real analysis), the class of infinitely differentiable functions which are definable in a given polynomially bounded o-minimal structure (in model theory), as well as the classes of real- or complex-analytic functions, and algebraic functions over any field of characteristic zero. The monomialization theorem asserts that a mapping in a quasianalytic class can be transformed to a mapping whose components are monomials with respect to suitable local coordinates, by sequences of simple modifications of the source and target (local blowings-up and power substitutions in the real cases, in general, and local blowings-up alone in the algebraic or analytic cases). Monomialization is a version of resolution of singularities for a mapping. It is not possible, in general, to monomialize by global blowings-up, even in the real analytic case.
For a proper semistable curve $X$ over a DVR of mixed characteristics we reprove the invariant cycles theorem with trivial coefficients (see Chiarellotto, 1999) i.e. that the group of elements annihilated by the monodromy operator on the first de Rham cohomology group of the generic fiber of $X$ coincides with the first rigid cohomology group of its special fiber, without the hypothesis that the residue field of $cal V$ is finite. This is done using the explicit description of the monodromy operator on the de Rham cohomology of the generic fiber of $X$ with coefficients convergent $F$-isocrystals given in Coleman and Iovita (2010). We apply these ideas to the case where the coefficients are unipotent convergent $F$-isocrystals defined on the special fiber (without log-structure): we show that the invariant cycles theorem does not hold in general in this setting. Moreover we give a sufficient condition for the non exactness.
105 - Adrian Langer 2019
We study restriction of logarithmic Higgs bundles to the boundary divisor and we construct the corresponding nearby-cycles functor in positive characteristic. As applications we prove some strong semipositivity theorems for analogs of complex polarized variations of Hodge structures and their generalizations. This implies, e.g., semipositivity for the relative canonical divisor of a semistable reduction in positive characteristic and it gives some new strong results generalizing semipositivity even for complex varieties.
123 - Haoyu Hu 2021
For a constructible etale sheaf on a smooth variety of positive characteristic ramified along an effective divisor, the largest slope in Abbes and Saitos ramification theory of the sheaf gives a divisor with rational coefficients called the conductor divisor. In this article, we prove decreasing properties of the conductor divisor after pull-backs. The main ingredient behind is the construction of etale sheaves with pure ramifications. As applications, we first prove a lower semi-continuity property for conductors of etale sheaves on relative curves in the equal characteristic case, which supplement Deligne and Laumons lower semi-continuity property of Swan conductors and is also an $ell$-adic analogue of Andres semi-continuity result of Poincare-Katz ranks for meromorphic connections on complex relative curves. Secondly, we give a ramification bound for the nearby cycle complex of an etale sheaf ramified along the special fiber of a regular scheme semi-stable over an equal characteristic henselian trait, which extends a main result in a joint work with Teyssier and answers a conjecture of Leal in a geometric situation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا