Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.
Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse-longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore direct and reverse emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL and G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.
Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the matched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.
Muon storage rings have been proposed for use as a source of high-energy neutrino beams (the Neutrino Factory) and as the basis for a high-energy lepton-antilepton collider (the Muon Collider). The Neutrino Factory is widely believed to be the machine of choice for the search for leptonic CP violation while the Muon Collider may prove to be the most practical route to multi-TeV lepton-antilepton collisions. The baseline conceptual designs for each of these facilities requires the phase-space compression (cooling) of the muon beams prior to acceleration. The short muon lifetime makes it impossible to employ traditional techniques to cool the beam while maintaining the muon-beam intensity. Ionization cooling, a process in which the muon beam is passed through a series of liquid-hydrogen absorbers followed by accelerating RF cavities, is the technique proposed to cool the muon beam. The international Muon Ionization Cooling Experiment (MICE) collaboration will carry out a systematic study of ionization cooling. The MICE experiment, which is under construction at the Rutherford Appleton Laboratory, will begin to take data late this year. The MICE cooling channel, the instrumentation and the implementation at the Rutherford Appleton Laboratory are described together with the predicted performance of the channel and the measurements that will be made.
A high-energy muon collider scenario requires a final cooling system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittances by a factor of ~25. Implementation will require optical matching of the exiting beam into downstream acceleration systems.
The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.