No Arabic abstract
We assess the photometric variability of nine stars with spectroscopic Teff and log(g) values from the ELM Survey that locate them near the empirical extremely low-mass (ELM) white dwarf instability strip. We discover three new pulsating stars: SDSS J135512.34+195645.4, SDSS J173521.69+213440.6 and SDSS J213907.42+222708.9. However, these are among the few ELM Survey objects that do not show radial velocity variations to confirm the binary nature expected of helium-core white dwarfs. The dominant 4.31-hr pulsation in SDSS J135512.34+195645.4 far exceeds the theoretical cutoff for surface reflection in a white dwarf, and this target is likely a high-amplitude delta Scuti pulsator with an overestimated surface gravity. We estimate the probability to be less than 0.0008 that the lack of measured radial velocity variations in four of eight other pulsating candidate ELM white dwarfs could be due to low orbital inclination. Two other targets exhibit variability as photometric binaries. Partial coverage of the 19.342-hr orbit of WD J030818.19+514011.5 reveals deep eclipses that imply a primary radius > 0.4 solar radii--too large to be consistent with an ELM white dwarf. The only object for which our time series photometry adds support to the ELM white dwarf classification is SDSS J105435.78-212155.9, with consistent signatures of Doppler beaming and ellipsoidal variations. We interpret that the ELM Survey contains multiple false positives from another stellar population at Teff < 9000 K, possibly related to the sdA stars recently reported from SDSS spectra.
Extremely low mass (ELM) white dwarfs (WDs) with masses <0.25 Msun are rare objects that result from compact binary evolution. Here, we present a targeted spectroscopic survey of ELM WD candidates selected by color. The survey is 71% complete and has uncovered 18 new ELM WDs. Of the 7 ELM WDs with follow-up observations, 6 are short-period binaries and 4 have merger times less than 5 Gyr. The most intriguing object, J1741+6526, likely has either a pulsar companion or a massive WD companion making the system a possible supernova Type Ia or .Ia progenitor. The overall ELM Survey has now identified 19 double degenerate binaries with <10 Gyr merger times. The significant absence of short orbital period ELM WDs at cool temperatures suggests that common envelope evolution creates ELM WDs directly in short period systems. At least one-third of the merging systems are halo objects, thus ELM WD binaries continue to form and merge in both the disk and the halo.
We begin the search for extremely-low mass ($Mleq0.3M_{odot}$, ELM) white dwarfs (WDs) in the southern sky based on photometry from the VST ATLAS and SkyMapper surveys. We use a similar color-selection method as the Hypervelocity star survey. We switched to an astrometric selection once Gaia Data Release 2 became available. We use the previously known sample of ELM white dwarfs to demonstrate that these objects occupy a unique parameter space in parallax and magnitude. We use the SOAR 4.1m telescope to test the Gaia-based selection, and identify more than two dozen low-mass white dwarfs, including 6 new ELM white dwarf binaries with periods as short as 2 h. The better efficiency of the Gaia-based selection enables us to extend the ELM Survey footprint to the southern sky. We confirm one of our candidates, J0500$-$0930, to become the brightest ($G=12.6$ mag) and closest ($d=72$ pc) ELM white dwarf binary currently known. Remarkably, the Transiting Exoplanet Survey Satellite (TESS) full-frame imaging data on this system reveals low-level ($<0.1$%) but significant variability at the orbital period of this system ($P=9.5$ h), likely from the relativistic beaming effect. TESS data on another system, J0642$-$5605, reveals ellipsoidal variations due to a tidally distorted ELM WD. These demonstrate the power of TESS full-frame images in confirming the orbital periods of relatively bright compact object binaries.
In a search for new white dwarfs in DR12 of the Sloan Digital Sky Survey, Kepler et al. (2016) found atmospheric parameters for thousands of objects with effective temperatures below 20,000 K and surface gravities between 5.5 < log(g) < 6.5. They classified these objects as cool subdwarfs -- sdA -- and speculated that many may be extremely low-mass (ELM) white dwarfs (helium-core white dwarfs with masses below 0.3 Msun). We present evidence -- using radial velocities, photometric colors, and reduced proper motions -- that the vast majority (>99%) of these objects are unlikely to be ELM white dwarfs. Their true identity remains an interesting question.
We present the discovery of 17 low mass white dwarfs (WDs) in short-period P<1 day binaries. Our sample includes four objects with remarkable log(g)~5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or on-going accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have >=0.9 Msun companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be milli-second pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.
We present the final sample of 98 detached double white dwarf (WD) binaries found in the Extremely Low Mass (ELM) Survey, a spectroscopic survey targeting <0.3 Msun He-core WDs completed in the Sloan Digital Sky Survey footprint. Over the course of the survey we observed ancillary low mass WD candidates like GD278, which we show is a P=0.19 d double WD binary, as well as candidates that turn out to be field blue straggler/subdwarf A-type stars with luminosities too large to be WDs given their Gaia parallaxes. Here, we define a clean sample of ELM WDs that is complete within our target selection and magnitude range 15<g_0<20 mag. The measurements are consistent with 100% of ELM WDs being 0.0089 < P < 1.5 d double WD binaries, 35% of which belong to the Galactic halo. We infer these are mostly He+CO WD binaries given the measurement constraints. The merger rate of the observed He+CO WD binaries exceeds the formation rate of stable mass transfer AM CVn binaries by a factor of 25, and so the majority of He+CO WD binaries must experience unstable mass transfer and merge. The shortest-period systems like J0651+2844 are signature {it LISA} verification binaries that can be studied with gravitational waves and light.