Do you want to publish a course? Click here

Pressure-Induced Metallization in Iron-Based Ladder Compounds Ba$_{1-x}$Cs$_x$Fe$_2$Se$_3$

51   0   0.0 ( 0 )
 Added by Takafumi Hawai
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electrical resistivity measurements have been performed on the iron-based ladder compounds Ba$_{1-x}$Cs$_x$Fe$_2$Se$_3$ ($x$ = 0, 0.25, 0.65, and 1) under high pressure. A cubic anvil press was used up to 8.0 GPa, whereas further higher pressure was applied using a diamond anvil cell up to 30.0 GPa. Metallic behavior of the electrical conductivity was confirmed in the $x$ = 0.25 and 0.65 samples for pressures greater than 11.3 and 14.4 GPa, respectively, with the low-temperature $log T$ upturn being consistent with weak localization of 2D electrons due to random potential. At pressures higher than 23.8 GPa, three-dimensional Fermi-liquid-like behavior was observed in the latter sample. No metallic conductivity was observed in the parent compounds BaFe$_2$Se$_3$ ($x $ = 0) up to 30.0 GPa and CsFe$_2$Se$_3$ ($x$ = 1) up to 17.0 GPa. The present results indicate that the origins of the insulating ground states in the parent and intermediate compounds are intrinsically different; the former is a Mott insulator, whereas the latter is an Anderson insulator owing to the random substitution of Cs for Ba.



rate research

Read More

187 - S Chadov , G.H. Fecher , C. Felser 2008
This study presents the effect of local electronic correlations on the Heusler compounds Co$_2$Mn$_{1-x}$Fe$_x$Si as a function of the concentration $x$. The analysis has been performed by means of first-principles band-structure calculations based on the local approximation to spin-density functional theory (LSDA). Correlation effects are treated in terms of the Dynamical Mean-Field Theory (DMFT) and the LSDA+U approach. The formalism is implemented within the Korringa-Kohn-Rostoker (KKR) Greens function method. In good agreement with the available experimental data the magnetic and spectroscopic properties of the compound are explained in terms of strong electronic correlations. In addition the correlation effects have been analysed separately with respect to their static or dynamical origin. To achieve a quantitative description of the electronic structure of Co$_2$Mn$_{1-x}$Fe$_x$Si both static and dynamic correlations must be treated on equal footing.
The magnetic properties of iron-based superconductors $A$Fe$_2$As$_2$ ($A=$K, Cs, and Rb), which are characterized by the V-shaped dependence of the critical temperature ($T_{rm c}$) on pressure ($P$) were studied by means of the muon spin rotation/relaxation technique. In all three systems studied the magnetism was found to appear for pressures slightly below the critical one ($P_{rm c}$), i.e. at pressure where $T_{rm c}(P)$ changes the slope. Rather than competing, magnetism and superconductivity in $A$Fe$_2$As$_2$ are coexisting at $Pgtrsim P_{rm c}$ pressure region. Our results support the scenario of a transition from one pairing state to another, with different symmetries on either side of $P_{rm c}$.
In-plane resistivity measurements as a function of temperature and magnetic field up to 35~T with precise orientation within the crystallographic $ac-$plane were used to study the upper critical field, $H_{c2}$, of the hole-doped iron-based superconductor Ba$_{1-x}$K$_x$Fe$_2$As$_2$. Compositions of the samples studied were spanning from underdoped $x=$0.17 ($T_c$=12~K) and $x$=0.22 ($T_c$=20~K), both in the coexistence range of stripe magnetism and superconductivity, though optimal doping $x$=0.39 ($T_c$=38.4~K), $x$=0.47 ($T_c$=37.2~K), to overdoped $x$=0.65 ($T_c$=22~K), $x$=0.83 ($T_c$=10~K). We find notable doping asymmetry of the shapes of the anisotropic $H_{c2}(T)$ suggesting important role of paramagnetic limiting effects in $H parallel a$ configuration in overdoped compositions and multi-band effects in underdoped compositions.
We present a systematic investigation of the electrical, structural, and antiferromagnetic properties for the series of Ba(Fe$_{1-x-y}$Co$_{x}$Rh$_{y}$)$_{2}$As$_{2}$ compounds with fixed $x approx$ 0.027 and $ 0 leq y leq 0.035$. We compare our results for the Co-Rh doped Ba(Fe$_{1-x-y}$Co$_{x}$Rh$_{y}$)$_{2}$As$_{2}$ compounds with the Co doped Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ compounds. We demonstrate that the electrical, structural, antiferromangetic, and superconducting properties of the Co-Rh doped compounds are similar to the properties of the Co doped compounds. We find that the overall behaviors of Ba(Fe$_{1-x-y}$Co$_{x}$Rh$_{y}$)$_{2}$As$_{2}$ and Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ compounds are very similar when the total number of extra electrons per Fe/$TM$ ($TM$ = transition metal) site is considered, which is consistent with the rigid band model. Despite the similarity, we find that the details of the transitions, for example, the temperature difference between the structural and antiferromagnetic transition temperatures and the incommensurability of the antiferromangetic peaks, are different between Ba(Fe$_{1-x-y}$Co$_{x}$Rh$_{y}$)$_{2}$As$_{2}$ and Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ compounds.
Since the discovery of pressure-induced superconductivity in the two-leg ladder system BaFe$_2X_3$ ($X$=S, Se), with the 3$d$ iron electronic density $n = 6$, the quasi-one-dimensional iron-based ladders have attracted considerable attention. Here, we use Density Functional Theory (DFT) to predict that the novel $n = 6$ iron ladder BaFe$_2$Te$_3$ could be stable with a similar crystal structure as BaFe$_2$Se$_3$. Our results also indicate that BaFe$_2$Te$_3$ will display the complex 2$times$2 Block-type magnetic order. Due to the magnetic striction effects of this Block order, BaFe$_2$Te$_3$ should be a magnetic noncollinear ferrielectric system with a net polarization $0.31$ $mu$C/cm$^2$. Compared with the S- or Se-based iron ladders, the electrons of the Te-based ladders are more localized, implying that the degree of electronic correlation is enhanced for the Te case which may induce additional interesting properties. The physical and structural similarity with BaFe$_2$Se$_3$ also suggests that BaFe$_2$Te$_3$ could become superconducting under high pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا