No Arabic abstract
We establish necessary and sufficient conditions for a semigroup identity to hold in the monoid of $ntimes n$ upper triangular tropical matrices, in terms of equivalence of certain tropical polynomials. This leads to an algorithm for checking whether such an identity holds, in time polynomial in the length of the identity and size of the alphabet. It also allows us to answer a question of Izhakian and Margolis, by showing that the identities which hold in the monoid of $2times 2$ upper triangular tropical matrices are exactly the same as those which hold in the bicyclic monoid. Our results extend to a broader class of chain structured tropical matrix semigroups; we exhibit a faithful representation of the free monogenic inverse semigroup within such a semigroup, which leads also to a representation by $3times 3$ upper triangular matrix semigroups, and a new proof of the fact that this semigroup satisfies the same identities as the bicyclic monoid.
This paper presents new results on the identities satisfied by the hypoplactic monoid. We show how to embed the hypoplactic monoid of any rank strictly greater than 2 (including infinite rank) into a direct product of copies of the hypoplactic monoid of rank 2. This confirms that all hypoplactic monoids of rank greater than or equal to 2 satisfy exactly the same identities. We then give a complete characterization of those identities, and prove that the variety generated by the hypoplactic monoid has finite axiomatic rank, by giving a finite basis for it.
We exhibit a faithful representation of the plactic monoid of every finite rank as a monoid of upper triangular matrices over the tropical semiring. This answers a question first posed by Izhakian and subsequently studied by several authors. A consequence is a proof of a conjecture of Kubat and Okni{n}ski that every plactic monoid of finite rank satisfies a non-trivial semigroup identity. In the converse direction, we show that every identity satisfied by the plactic monoid of rank $n$ is satisfied by the monoid of $n times n$ upper triangular tropical matrices. In particular this implies that the variety generated by the $3 times 3$ upper triangular tropical matrices coincides with that generated by the plactic monoid of rank $3$, answering another question of Izhakian.
The multiplicative semigroup $M_n(F)$ of $ntimes n$ matrices over a field $F$ is well understood, in particular, it is a regular semigroup. This paper considers semigroups of the form $M_n(S)$, where $S$ is a semiring, and the subsemigroups $UT_n(S)$ and $U_n(S)$ of $M_n(S)$ consisting of upper triangular and unitriangular matrices. Our main interest is in the case where $S$ is an idempotent semifield, where we also consider the subsemigroups $UT_n(S^*)$ and $U_n(S^*)$ consisting of those matrices of $UT_n(S)$ and $U_n(S)$ having all elements on and above the leading diagonal non-zero. Our guiding examples of such $S$ are the 2-element Boolean semiring $mathbb{B}$ and the tropical semiring $mathbb{T}$. In the first case, $M_n(mathbb{B})$ is isomorphic to the semigroup of binary relations on an $n$-element set, and in the second, $M_n(mathbb{T})$ is the semigroup of $ntimes n$ tropical matrices. Ilin has proved that for any semiring $R$ and $n>2$, the semigroup $M_n(R)$ is regular if and only if $R$ is a regular ring. We therefore base our investigations for $M_n(S)$ and its subsemigroups on the analogous but weaker concept of being Fountain (formerly, weakly abundant). These notions are determined by the existence and behaviour of idempotent left and right identities for elements, lying in particular equivalence classes. We show that certain subsemigroups of $M_n(S)$, including several generalisations of well-studied monoids of binary relations (Hall relations, reflexive relations, unitriangular Boolean matrices), are Fountain. We give a detailed study of a family of Fountain semigroups arising in this way that has particularly interesting and unusual properties.
The 6-element Brandt monoid $B_2^1$ admits a unique addition under which it becomes an additively idempotent semiring. We show that this addition is a term operation of $B_2^1$ as an inverse semigroup. As a consequence, we exhibit an easy proof that the semiring identities of $B_2^1$ are not finitely based.
We study the combinatorics of tropical hyperplane arrangements, and their relationship to (classical) hyperplane face monoids. We show that the refinement operation on the faces of a tropical hyperplane arrangement, introduced by Ardila and Develin in their definition of a tropical oriented matroid, induces an action of the hyperplane face monoid of the classical braid arrangement on the arrangement, and hence on a number of interesting related structures. Along the way, we introduce a new characterization of the types (in the sense of Develin and Sturmfels) of points with respect to a tropical hyperplane arrangement, in terms of partial bijections which attain permanents of submatrices of a matrix which naturally encodes the arrangement.