No Arabic abstract
Solitons and vortices obtain widespread attention in different physical systems as they offer potential use in information storage, processing, and communication. In exciton-polariton condensates in semiconductor microcavities, solitons and vortices can be created optically. However, dark solitons are unstable and vortices cannot be spatially controlled. In the present work we demonstrate the existence of stable dark solitons and vortices under non-resonant incoherent excitation of a polariton condensate with a simple spatially periodic pump. In one dimension, we show that an additional coherent light pulse can be used to create or destroy a dark soliton in a controlled manner. In two dimensions we demonstrate that a coherent light beam can be used to move a vortex to a specific position on the lattice or be set into motion by simply switching the periodic pump structure from two-dimensional (lattice) to one-dimensional (stripes). Our theoretical results open up exciting possibilities for optical on-demand generation and control of dark solitons and vortices in polariton condensates.
Bose-Einstein condensates of exciton-polaritons are described by a Schrodinger system of two equations. Nonlinearity due to exciton interactions gives rise to a frequency band of dark soliton solutions, which are found analytically for the lossless zero-velocity case. The solitons far-field value varies from zero to infinity as the operating frequency varies across the band. For positive detuning (photon frequency higher than exciton frequency), the exciton wavefunction becomes discontinuous when the operating frequency exceeds the exciton frequency. This phenomenon lies outside the parameter regime of validity of the Gross-Pitaevskii (GP) model. Within its regime of validity, we give a derivation of a single-mode GP model from the initial Schrodinger system and compare the continuous polariton solitons and GP solitons using the healing length notion.
We investigate the propagation and scattering of polaritons in a planar GaAs microcavity in the linear regime under resonant excitation. The propagation of the coherent polariton wave across an extended defect creates phase and intensity patterns with identical qualitative features previously attributed to dark and half-dark solitons of polaritons. We demonstrate that these features are observed for negligible nonlinearity (i.e., polariton-polariton interaction) and are, therefore, not sufficient to identify dark and half-dark solitons. A linear model based on the Maxwell equations is shown to reproduce the experimental observations.
In a recent preprint (arXiv:1401.1128v1) Cilibrizzi and co-workers report experiments and simulations showing the scattering of polaritons against a localised obstacle in a semiconductor microcavity. The authors observe in the linear excitation regime the formation of density and phase patterns reminiscent of those expected in the non-linear regime from the nucleation of dark solitons. Based on this observation, they conclude that previous theoretical and experimental reports on dark solitons in a polariton system should be revised. Here we comment why the results from Cilibrizzi et al. take place in a very different regime than previous investigations on dark soliton nucleation and do not reproduce all the signatures of its rich nonlinear phenomenology. First of all, Cilibrizzi et al. consider a particular type of radial excitation that strongly determines the observed patterns, while in previous reports the excitation has a plane-wave profile. Most importantly, the nonlinear relation between phase jump, soliton width and fluid velocity, and the existence of a critical velocity with the time-dependent formation of vortex-antivortex pairs are absent in the linear regime. In previous reports about dark soliton and half-dark soliton nucleation in a polariton fluid, the distinctive dark soliton physics is supported both by theory (analytical and numerical) and experiments (both continuous wave and pulsed excitation).
Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the generalized nonlinear Schroedinger or Gross-Pitaevskii equation. Analytical theory is illustrated by examples of dynamics of ring solitons in light beams propagating through a photorefractive medium and in non-uniform condensates confined in axially symmetric traps. Analytical results agree very well with the results of our numerical simulations.
We consider the existence, stability and dynamics of the nodeless state and fundamental nonlinear excitations, such as vortices, for a quasi-two-dimensional polariton condensate in the presence of pumping and nonlinear damping. We find a series of interesting features that can be directly contrastedto the case of the typically energy-conserving ultracold alkali-atom Bose-Einstein condensates (BECs). For sizeable parameter ranges, in line with earlier findings, the nodeless state becomes unstable towards the formation of {em stable} nonlinear single or multi-vortex excitations. The potential instability of the single vortex is also examined and is found to possess similar characteristics to those of the nodeless cloud. We also report that, contrary to what is known, e.g., for the atomic BEC case, {it stable} stationary gray rings (that can be thought of as radial forms of a Nozaki-Bekki hole) can be found for polariton condensates in suitable parametric regimes. In other regimes, however, these may also suffer symmetry breaking instabilities. The dynamical, pattern-forming implications of the above instabilities are explored through direct numerical simulations and, in turn, give rise to waveforms with triangular or quadrupolar symmetry.