No Arabic abstract
The non-Markovian nature of quantum systems recently turned to be a key subject for investigations on open quantum system dynamics. Many studies, from its theoretical grounding to its usefulness as a resource for quantum information processing and experimental demonstrations, have been reported in the literature. Typically, in these studies, a structured reservoir is required to make non-Markovian dynamics to emerge. Here, we investigate the dynamics of a qubit interacting with a bosonic bath and under the injection of a classical stochastic colored noise. A canonical Lindblad-like master equation for the system is derived, using the stochastic wavefunction formalism. Then, the non-Markovianity of the evolution is witnessed using the Andersson, Cresser, Hall and Li measure. We evaluate the measure for three different noises and study the interplay between environment and noise pump necessary to generate quantum non-Markovianity, as well as the energy balance of the system. Finally, we discuss the possibility to experimentally implement the proposed model.
We provide an experimental study of the relationship between the action of different classical noises on the dephasing dynamics of a two-level system and the non-Markovianity of the quantum dynamics. The two-level system is encoded in the photonic polarization degrees of freedom and the action of the noise is obtained via a spatial light modulator, thus allowing for an easy engineering of different random environments. The quantum non-Markovianity of the dynamics driven by classical Markovian and non-Markovian noise, both Gaussian and non-Gaussian, is studied by means of the trace distance. Our study clearly shows the different nature of the notion of non-Markovian classical process and non-Markovian quantum dynamics.
We study the influence of a chaotic environment in the evolution of an open quantum system. We show that there is an inverse relation between chaos and non-Markovianity. In particular, we remark on the deep relation of the short time non-Markovian behavior with the revivals of the average fidelity amplitude-a fundamental quantity used to measure sensitivity to perturbations and to identify quantum chaos. The long time behavior is established as a finite size effect which vanishes for large enough environments.
We consider the issue of non-Markovianity of a quantum dynamics starting from a comparison with the classical definition of Markovian process. We point to the fact that two sufficient but not necessary signatures of non-Markovianity of a classical process find their natural quantum counterpart in recently introduced measures of quantum non-Markovianity. This behavior is analyzed in detail for quantum dynamics which can be built taking as input a class of classical processes.
Machine learning methods have proved to be useful for the recognition of patterns in statistical data. The measurement outcomes are intrinsically random in quantum physics, however, they do have a pattern when the measurements are performed successively on an open quantum system. This pattern is due to the system-environment interaction and contains information about the relaxation rates as well as non-Markovian memory effects. Here we develop a method to extract the information about the unknown environment from a series of projective single-shot measurements on the system (without resorting to the process tomography). The method is based on embedding the non-Markovian system dynamics into a Markovian dynamics of the system and the effective reservoir of finite dimension. The generator of Markovian embedding is learned by the maximum likelihood estimation. We verify the method by comparing its prediction with an exactly solvable non-Markovian dynamics. The developed algorithm to learn unknown quantum environments enables one to efficiently control and manipulate quantum systems.
We study the open dynamics of a quantum two-level system coupled to an environment modeled by random matrices. Using the quantum channel formalism, we investigate different quantum Markovianity measures and criteria. A thorough analysis of the whole parameter space, reveals a wide range of different regimes, ranging from strongly non-Markovian to Markovian dynamics. In contrast to analytical models, all non-Markovianity measures and criteria have to be applied to data with fluctuations and statistical uncertainties. We discuss the practical usefulness of the different approaches.