Do you want to publish a course? Click here

Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference

231   0   0.0 ( 0 )
 Added by Karol Bartkiewicz
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of 9 Makhlins invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate that these invariants are both a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.



rate research

Read More

Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.
Traditional ghost imaging experiments exploit position correlations between correlated states of light. These correlations occur directly in spontaneous parametric down-conversion (SPDC), and in such a scenario, the two-photon state used for ghost imaging is symmetric. Here we perform ghost imaging using an anti-symmetric state, engineering the two-photon state symmetry by means of Hong-Ou-Mandel interference. We use both symmetric and anti-symmetric states and show that the ghost imaging setup configuration results in object-image rotations depending on the state selected. Further, the object and imaging arms employ spatial light modulators for the all-digital control of the projections, being able to dynamically change the measuring technique and the spatial properties of the states under study. Finally, we provide a detailed theory that explains the reported observations.
181 - A. Ferreri , V. Ansari , B. Brecht 2020
The phenomenon of entanglement is the basis of quantum information and quantum communication processes. Entangled systems with a large number of photons are of great interest at present because they provide a platform for streaming technologies based on photonics. In this paper we present a device which operates with four-photons and based on the Hong-Ou-Mandel (HOM) interference. The presented device allows to maximize the degree of spatial entanglement and generate the highly entangled four-dimensional Bell states. Furthermore, the use of the interferometer in different regimes leads to fast interference fringes in the coincidence probability with period of oscillations twice smaller than the pump wavelength. We have a good agreement between theoretical simulations and experimental results.
We report direct evidence of the bosonic nature of surface plasmon polaritons (SPPs) in a scattering-based beamsplitter. A parametric down-conversion source is used to produce two indistinguishable photons, each of which is converted into a SPP on a metal-stripe waveguide and then made to interact through a semi-transparent Bragg mirror. In this plasmonic analog of the Hong-Ou-Mandel experiment, we measure a coincidence dip with a visibility of 72%, a key signature that SPPs are bosons and that quantum interference is clearly involved.
Guided-wave platforms such as fiber and silicon-on-insulator waveguide show great advances over traditional free space implementations in quantum information technology for significant advantages of low transmission loss, low cost, integrability and compatible with mature fiber communication systems. Interference between independent photon sources is the key to realize complex quantum systems for more sophisticated applications such as multi-photon entanglement generation and quantum teleportation. In this work, we report Hong-Ou-Mandel interference between two independent all fiber photon pair sources over two 100GHz dense wave division multiplexing channels, the visibility reaches 53.2(8.4)% (82.9(5.3)%) without (with) back ground counts subtracted. In addition, we give a general theoretical description of the purity of the photon pair generation in dispersion shifted fiber and obtain the optimized condition for high purity photon pair generation. We also obtain a maximum coincidence to back ground ratio of 131 by cooling the fiber in liquid nitrogen. Our study shows great promising of integrated optical elements for future scalable quantum information promising.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا