Do you want to publish a course? Click here

Optical Neutrality: Invisibility without Cloaking

220   0   0.0 ( 0 )
 Added by Maxim Durach
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that it is possible to design an invisible wavelength-sized metal-dielectric metamaterial object without evoking cloaking. Our approach is an extension of the neutral inclusion concept by Zhou and Hu [Phys.Rev.E 74, 026607 (2006)] to Mie scatterers. We demonstrate that an increase of metal fraction in the metamaterial leads to a transition from dielectric-like to metal-like scattering, which proceeds through invisibility or optical neutrality of the scatterer. Formally this is due to cancellation of multiple scattering orders, similarly to plasmonic cloaking introduced by Alu and Engheta [Phys.Rev.E 72, 016623 (2005)], but without introduction of the separation of the scatterer into cloak and hidden regions.



rate research

Read More

Levitated nanodiamonds containing nitrogen vacancy centres in high vacuum are a potential test bed for numerous phenomena in fundamental physics. However, experiments so far have been limited to low vacuum due to heating arising from optical absorption of the trapping laser. We show that milling pure diamond creates nanodiamonds that do not heat up as the optical intensity is raised above 700 GW/m$^2$ below 5 mbar of pressure. This advance now means that the level of attainable vacuum for nanodiamonds in optical dipole traps is no longer temperature limited.
239 - Maxim Durach 2020
In this paper we reveal the physics behind the formation of tri- and tetra-hyperbolic phases in anisotropic metamaterials without magnetoelectric coupling and describe the anti-crossing splitting phenomenon in the hyperbolic dispersion which arises due to the hybridization of the plasmonic and magnetic Bloch high-k polaritons. This considerably deepens the understanding of the high-k polaritons and the topology of the optical iso-frequency surfaces in k-space and will find applications in optical nano-resolution imaging and emission rate and directivity control. To accomplish this, we develop a range of new techniques of theoretical optics for bianisotropic materials, including the quadratic index of refraction operator method, suitable to study the high-k polaritons with finite indices of refraction and the explicit expression for the characteristic matrix in generic bianisotropic media. We introduce the spatial stratification approach for the electric and magnetic responses of anisotropic homogeneous media to analyze the underlying Bloch waves. We believe that the formalisms developed here can be useful for the researchers in the field of theoretical optics of anisotropic and bianisotropic media in the future.
An elliptical invisible cloak is proposed using a coordinate transformation in the elliptical-cylindrical coordinate system, which crushes the cloaked object to a line segment instead of a point. The elliptical cloak is reduced to a nearly-circular cloak if the elliptical focus becomes very small. The advantage of the proposed invisibility cloak is that none of the parameters is singular and the changing range of all parameters is relatively small.
Gratings and holograms are patterned surfaces that tailor optical signals by diffraction. Despite their long history, variants with remarkable functionalities continue to be discovered. Further advances could exploit Fourier optics, which specifies the surface pattern that generates a desired diffracted output through its Fourier transform. To shape the optical wavefront, the ideal surface profile should contain a precise sum of sinusoidal waves, each with a well-defined amplitude, spatial frequency, and phase. However, because fabrication techniques typically yield profiles with at most a few depth levels, complex wavy surfaces cannot be obtained, limiting the straightforward mathematical design and implementation of sophisticated diffractive optics. Here we present a simple yet powerful approach to eliminate this design-fabrication mismatch by demonstrating optical surfaces that contain an arbitrary number of specified sinusoids. We combine thermal scanning-probe lithography and templating to create periodic and aperiodic surface patterns with continuous depth control and sub-wavelength spatial resolution. Multicomponent linear gratings allow precise manipulation of electromagnetic signals through Fourier-spectrum engineering. Consequently, we immediately resolve an important problem in photonics by creating a single-layer grating that simultaneously couples red, green, and blue light at the same angle of incidence. More broadly, we analytically design and accurately replicate intricate two-dimensional moire patterns, quasicrystals, and holograms, demonstrating a variety of previously impossible diffractive surfaces. Therefore, this approach provides instant benefit for optical devices (biosensors, lasers, metasurfaces, and modulators) and emerging topics in photonics (topological structures, transformation optics, and valleytronics).
We developed planar multilayered photonic-plasmonic structures, which support topologically protected optical states on the interface between metal and dielectric materials, known as optical Tamm states. Coupling of incident light to the Tamm states can result in perfect absorption within one of several narrow frequency bands, which is accompanied by a singular behavior of the phase of electromagnetic field. In the case of near-perfect absorptance, very fast local variation of the phase can still be engineered. In this work, we theoretically and experimentally demonstrate how these drastic phase changes can improve sensitivity of optical sensors. A planar Tamm absorber was fabricated and used to demonstrate remote near-singular-phase temperature sensing with an over an order of magnitude improvement in sensor sensitivity and over two orders of magnitude improvement in the figure of merit over the standard approach of measuring shifts of resonant features in the reflectance spectra of the same absorber. Our experimentally demonstrated phase-to-amplitude detection sensitivity improvement nearly doubles that of state-of-the-art nano-patterned plasmonic singular-phase detectors, with further improvements possible via more precise fabrication. Tamm perfect absorbers form the basis for robust planar sensing platforms with tunable spectral characteristics, which do not rely on low-throughput nano-patterning techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا