Thermal screening masses of the conserved vector current are calculated both in a weak-coupling approach and in lattice QCD. The inverse of a screening mass can be understood as the length scale over which an external electric field is screened in a QCD medium. The comparison of screening masses both in the zero and non-zero Matsubara frequency sectors shows good agreement of the perturbative and the lattice results. Moreover, at $Tapprox 508mathrm{MeV}$ the lightest screening mass lies above the free result ($2pi T$), in agreement with the $mathcal{O}(g^2)$ weak-coupling prediction.
Static and non-static thermal screening states that couple to the conserved vector current are investigated in the high-temperature phase of QCD. Their masses and couplings to the current are determined at weak coupling, as well as using two-flavor lattice QCD simulations. A consistent picture emerges from the comparison, providing evidence that non-static Matsubara modes can indeed be treated perturbatively. We elaborate on the physical significance of the screening masses.
We study $I=0$ quarkonium resonances decaying into pairs of heavy-light mesons using static-static-light-light potentials from lattice QCD. To this end, we solve a coupled channel Schrodinger equation with a confined quarkonium channel and channels with a heavy-light meson pair to compute phase shifts and $mbox{T}$ matrix poles for the lightest decay channel. We discuss our results for $S$, $P$, $D$ and $F$ wave states in the context of corresponding experimental results, in particular for $Upsilon(10753)$ and $Upsilon(10860)$.
We evaluate the static $qqbar{q}bar{q}$ and $qqqqbar{q}$ potentials in the quenched theory at $beta=5.8$ and $beta=6.0$ on a lattice of size $16^3times 32$. We compare the static potentials to the sum of two meson potentials for the tetraquark system and to the sum of the baryonic and mesonic potentials for the pentaquark state, as well as, with the confining potential obtained in the strong coupling expansion.
We present results for the static three- and four-quark potentials in SU(3) and SU(4) respectively. Using a variational approach, combined with multi-hit for the time-like links, we determine the ground state of the baryonic string with sufficient accuracy to test the $Y-$ and $Delta-$ ansatze for the baryonic Wilson area law. Our results favor the $Delta$ ansatz, where the potential is the sum of two-body terms.
We present a novel approach to compute the force between a static quark and a static antiquark from lattice gauge theory directly, rather than extracting it from the static energy. We explore this approach for SU(3) pure gauge theory using the multilevel algorithm and smeared operators.