Do you want to publish a course? Click here

A threshold result for loose Hamiltonicity in random regular uniform hypergraphs

88   0   0.0 ( 0 )
 Added by Catherine Greenhill
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Let $mathcal{G}(n,r,s)$ denote a uniformly random $r$-regular $s$-uniform hypergraph on $n$ vertices, where $s$ is a fixed constant and $r=r(n)$ may grow with $n$. An $ell$-overlapping Hamilton cycle is a Hamilton cycle in which successive edges overlap in precisely $ell$ vertices, and 1-overlapping Hamilton cycles are called loose Hamilton cycles. When $r,sgeq 3$ are fixed integers, we establish a threshold result for the property of containing a loose Hamilton cycle. This partially verifies a conjecture of Dudek, Frieze, Rucinski and Sileikis (2015). In this setting, we also find the asymptotic distribution of the number of loose Hamilton cycles in $mathcal{G}(n,r,s)$. Finally we prove that for $ell = 2,ldots, s-1$ and for $r$ growing moderately as $ntoinfty$, the probability that $mathcal{G}(n,r,s)$ has a $ell$-overlapping Hamilton cycle tends to zero.



rate research

Read More

Inspired by the study of loose cycles in hypergraphs, we define the emph{loose core} in hypergraphs as a structure which mirrors the close relationship between cycles and $2$-cores in graphs. We prove that in the $r$-uniform binomial random hypergraph $H^r(n,p)$, the order of the loose core undergoes a phase transition at a certain critical threshold and determine this order, as well as the number of edges, asymptotically in the subcritical and supercritical regimes. Our main tool is an algorithm called CoreConstruct, which enables us to analyse a peeling process for the loose core. By analysing this algorithm we determine the asymptotic degree distribution of vertices in the loose core and in particular how many vertices and edges the loose core contains. As a corollary we obtain an improved upper bound on the length of the longest loose cycle in $H^r(n,p)$.
In this paper, we study the spectra of regular hypergraphs following the definitions from Feng and Li (1996). Our main result is an analog of Alons conjecture for the spectral gap of the random regular hypergraphs. We then relate the second eigenvalues to both its expansion property and the mixing rate of the non-backtracking random walk on regular hypergraphs. We also prove the spectral gap for the non-backtracking operator of a random regular hypergraph introduced in Angelini et al. (2015). Finally, we obtain the convergence of the empirical spectral distribution (ESD) for random regular hypergraphs in different regimes. Under certain conditions, we can show a local law for the ESD.
256 - Jie Han , Jaehoon Kim 2016
Let $kge 3$ be an odd integer and let $n$ be a sufficiently large integer. We prove that the maximum number of edges in an $n$-vertex $k$-uniform hypergraph containing no $2$-regular subgraphs is $binom{n-1}{k-1} + lfloorfrac{n-1}{k} rfloor$, and the equality holds if and only if $H$ is a full $k$-star with center $v$ together with a maximal matching omitting $v$. This verifies a conjecture of Mubayi and Verstra{e}te.
We study the problems of bounding the number weak and strong independent sets in $r$-uniform, $d$-regular, $n$-vertex linear hypergraphs with no cross-edges. In the case of weak independent sets, we provide an upper bound that is tight up to the first order term for all (fixed) $rge 3$, with $d$ and $n$ going to infinity. In the case of strong independent sets, for $r=3$, we provide an upper bound that is tight up to the second-order term, improving on a result of Ordentlich-Roth (2004). The tightness in the strong independent set case is established by an explicit construction of a $3$-uniform, $d$-regular, cross-edge free, linear hypergraph on $n$ vertices which could be of interest in other contexts. We leave open the general case(s) with some conjectures. Our proofs use the occupancy method introduced by Davies, Jenssen, Perkins, and Roberts (2017).
We find an asymptotic enumeration formula for the number of simple $r$-uniform hypergraphs with a given degree sequence, when the number of edges is sufficiently large. The formula is given in terms of the solution of a system of equations. We give sufficient conditions on the degree sequence which guarantee existence of a solution to this system. Furthermore, we solve the system and give an explicit asymptotic formula when the degree sequence is close to regular. This allows us to establish several properties of the degree sequence of a random $r$-uniform hypergraph with a given number of edges. More specifically, we compare the degree sequence of a random $r$-uniform hypergraph with a given number edges to certain models involving sequences of binomial or hypergeometric random variables conditioned on their sum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا